o I -6/

J03569
bl P

4374

NASA Technical Memorandum 108795

The Automated Instrumentation
and Monitoring System (AIMS)
Reference Manual

Jerry Yan, Philip Hontalas, Sherry Listgarten, et al.

(NASA-TM-108795) THE AUTOMATED N94-23510
INSTRUMENTATION AND MONITORING

SYSTEM (AIMS) REFERENCE MANUAL

(NASA) 61 p uUnclas

G3/61 0203569

November 1993

NASA

National Aeronautics and
Space Administration

-

NASA Technical Memorandum 108795

The Automated Instrumentation
and Monitoring System (AIMS)
Reference Manual

Jerry Yan, Recom Technologies, San Jose, California

Philip Hontalas, Ames Research Center, Moffett Field, California
Sherry Listgarten, Recom Technologies, San Jose, California

et al.

November 1983

NASA

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

LIST OF AUTHORS

Jerry Yan, Recom Technologies, San Jose, California

Philip Hontalas, Ames Research Center, Moffett Field, California
Sherry Listgarten, Recom Technologies, San Jose, California
Charles Fineman, Sterling Software, Palo Alto, California

Melisa Schmidt, Pankaj Mehra, and Sekhar Sarukkai,
Recom Technologies, San Jose, California

Cathy Schulbach, Ames Research Center, Moffett Field, California

PRECBDING FPAGE BLANK NOT FH.MED

\
e LU WTE Y BLANK
oane L INTENTIONALLY BLA

Table of Contents

381111111 o AT 1
D B s ere ey ate) ¢ WU PP PP L L I L 2
1.1. The Automated Instrumentation and Monitoring SyStemccooomrrmvssreneane: 2
1.2. Background and HiSTOTYcccciumrimirmnissemsstonsnmmssssssss s 2
1.3. System Capabilities and REQUITEMENTSvvvvmurirrmsinsriermmsineeen e 3
1.4. Outline of DOCUINEIIEoiveeemecuiremiamerser et s 3
2. Using AIMS — An EXQMPLe .ooovvmrmriiiisniinisissnmsi s 4
2.1. The Transpose PrOZIAIMcoiuiiiiimisarsssin s 5
2.2, Source Code INSTIUMENTAIONovvrmrrrrrrrrreieni ittt 5
2.3, Linking and RUNMINGeorremimirmimmns s 7
2.4. Examining the Dala......coovverrinimimm s e 7
2.4.1. Creating a sorted trace file With traCeSOTLcovverimirimrmrsriserrieicire e 7
2 4.2 Trace file Animation With VK ... 8
242 1. The OVEIVIEW ..uiiiiireeirieiitreeseaie st 8
2.4.2.2. The BOXES VIEWScccereruiereeiaoiesrasirressssssssimm st 9

2.4.2.3. Pausing VK ...coooomiiini s 10

2.4.3. Performance Summary With tally .o 12

pISTIIT 11, (7)o R 12

3. Source Code INSIUMENIAIONocuvvrrerrerierresirsnrsnsasta ettt 14

3.1, KINSETUMEIIE. coeouieieeeeerieirciresesrees st e SO 14

3.1.1. Calling XINSELUMENE oo 14

3.1.2. USiNg XAMSELUMEN T ittt 15

3.2. Batch mode INSIIUMETIEOTSc.ourmruruesesseieerers st 17

3.2.1. Command-HNe SYTIAXccoivrrirmririrmiiermrinsn s 17

3.2.2. Differences with XINSELUMEN . ..o 18

3.3, TNStrUMEentor DITECHIVES ...oeeoeiiriiriiinresee e sm s 18

3.3.1. Using Instrumentor DITECVEScoovivmrmiciiimcesmmsmss s 18

3.3.2. begin_trace andend_traCe......cimss s 19

3.3.3. begin_block andend_bloCK. ... 19

334, INSETL _IMAYKET .ot 19

33,5, FlUSI LA i irrcriereiiimteans e 20

336. define_gridanddefine_grid _node.......e 20

3.4. Limitations of the INnStrumentorsccccoeriimmmminnrneee D P SRR 20

3.4.1. USING LADELS ...oovoiiimrmmimmcineriiromem s 20

3.4.2. Warning Messages During Compilation ..o 21

3.4.3. Warning Messages During EXeCUtion ... 21

3.4 4. What is Not InStrumented.........cooorrrennmmmnin e 22

PRECBDING PAGE BLANK NOT FHMED page LY INTENTIONALLY BLANK

3.5. Preprocessing PrOZIAMSc.oomvimiiiuieiiee e 22

4. Run-Time Performance Monitoring Library..........cceoeeevvueeeemieeereseneeeeeeeeeennn 23
4.1. MODItor Parameters.ccoouiimiiiiiicniete ettt 23

4. 1.1, TRACE_FILE. ..ottt eicnene ettt e et ene e e e e e eeeeses s 23

4. 1.2, H_TRACE_FILE ...oiittieotereriieiteeteeee e e eeee et e see s oot es e ene . 24

4.1.3. FILE_MODE.....ocoiiiiiititiiininte et eee e eee et ee e ee e seeeee e e 24

4.1.4. HOST_PROGRAM.............. SR ettt re e ety e e et er e et rne e e e e nnaeereeans 24

4.1.5. TRACE_LEVEL.....oottiiieiierineieteees e eeee e eeeeeeeeeeee e eeeeneseesse e e e e ees e 24

4.1.6. BLOCK_ON_ALL_SYNC...cccttitrtritieteeiereeseeeteeeeeeeeeessseeaeeeeeeeeeerees e, 25

4.1.7. BUFFER _STIZE....coititiieetirtrieeneeei et ete et e e ee et e e s e 25

4.1.8. FLUSH_MODE......otieurertteniantaneeteies e e e eeseeees e s e eseee e e eeneeees oo 25

4.1.9. PROFILE....iiiititetiieniicrceieeeicenes e eeens e se et ne et oot ee e eeenens 26
4.1.10. APPL_DB_FTILE ..ccioittitiatiriereertreeeeeesreereseeeeeee e eereeeeeeeeeeee e e eesseemeons 26
4.1.11. Examples of .MONITOR Files.........corvvrurrrmrvrereriereeeeneeeiceeeeeeeeeereeeen. 26

4.2. Linking with the MONItOTocovoiiiiieirie e e, 27

5. Examining the Trace Filecoooiiiiiiiiiriiieeeee e 28
5.1. Sorting the Trace File..........cccoooiiiiiiie e 28
5.2. The View Kernel ... 28
5.2.1. INVOKING VEK...ooiiiiiiiiiciee ettt e, 28

5.2.2. USING VK ..ottt e e ess et ene e e anns 29

5.2.3. OVEIVIEW ..ottt 31

5.2.4. BOXES VIBWS...oooiiiiic et e 33

5.2.5. Commumnication Load............cccccciiiimnieeeee e 34

5.2.6. INDOX SIZES ..o, 35

5.2.7. AdJUSHNE VEK....oriiiiiiie et en e 35

530 ALY et 36
5.3.1. Calling £@L11Y oo, 36

5.3.2. £A11Y S OUIPUL. oottt et 37

6. Customizing AIMSccooiiiiii et et 40
6.1. Setting Defaults for Parametersccocoeeeeieiimiviioeceeeeeeeeeeeeeeeeeeeeeen 40
6.1.1. Specifying Defaults on the Command Linecoccooovevviemiriiie, 40

6.1.2. Specifying Defaults in Filesc.co.oooouioiieiiiioniiece e 40

6.1.3. How AIMS Finds Defaultsc..cccooiiiininiiceee . 40

6.2. Changing VK’s Parameters Dynamically................cc..coooooiiiinniiiienee, 41
6.3. A Listing of AIMS’ Parameters..........cocooeeiuiiriomemireeieeeeeeeeeeeeeeeeeeee e 42

7. References and BiblioGraphyc.cocovuiirimiieeieiieeeeeeeeeeeeeeeet e 44
Appendix A. Installation Guideccoevroiiniinciiiieecec e, e 45
Appendix B. From Source Code to Trace Records...........ccoerereemrrrerurreseeeenceneeeeenen. 47

Appendix C. Trace ReCOTAS .oouiiimreiriimscmnnmiimmminnsisecnssarnenses teesseeressaressbenaannnarene 50

C.1. A Listing of AIMS Trace ReCOTAS......cccoovurmuimmmemiimmmmsmmsmsissis s o 50
C.2. Trace ReCOTd FOTTNALS ...cccrueeiiriemrinseriseermsiermss s s s 50
C.2.1. SHOTE FOTTNAL ...c.eoveueeeecereieieimrne et ssems s s b s s 50

C.2.2. Code BlOCK FOIMALcovvieiieueurmsineeemese st 51

C.2.3. MeSSage FOTIMALomrireciciirinismims s 51

C.2.4. Short Message FOTINALccovimrurunieimmmniessisr s 51

C.2.5. FIUSH FOITIALooviuieerereeuercaeieeemesmssrmsee et s 52

C.2.6. TOPOLOZY FOTMNALoovuiimirmciiiimimmsisi s 52

C.3. Trace Record INTEIPTELALION . .o.ovrirmcieruissriinnssse s 52
Appendix D. AIMS PaTAIMEIETS ...ouuvvmiesserrsiesssimssmsnsinss sttt s 53
D.1. XINStrUMent PATAINIETETS ...coceoviomiriiiseienmrrienrs sttt s 53
D.2. VI PATAIMELETSovoveeensesmeaseeeeesesimnanessssesraeesss st san s st s s s st 53
D.2.1. General VK Parameterscccoicerermsseimenmsissrmnmimisssscssssss s s 53

D.2.2. VieW PATAIMELETSoectveeeriatimnmrnsieaaneenssnnsans s s st 55
D.2.2.1. General View Parametersccooururemrermsiemrmsmmnsssssssssisnsssinsnsseeees 55

D.2.2.2. Scrolling View Parameterscocourusssisrrisiesmsimsmsssssssren e 56

D.2.2.3. Histogram View Parameters.ocoovieeiomrimmsssiesssesimsm s 57

D.2.2.4. Specific View Parameterscocoovvevmrmieomimnmmimmmiss s 58

Appendix E. Converting AIMS Trace Files for ParaGraphcccoooevimiiiinnnnnineee. 60

Figures

Figure 2-1. Using AIMS to Fvaluate Parallel Program EXecutioncccooeevemnianes 4
Figure 2-2. Output from Matrix Transpose EXample ... 6
Figure 2-3. Graphical Interface of “xinstrument”™: AIMS’s Source Code
TEUSEIUITICTIEOT v veeeeeasenseneemcseeceeesseses s escre e am s s m b e RS S E TS E TSm0 7
Figure 2-4. VK'S Main MeNU coooouviviieiiinmcinnesims s s 8
Figure 2-5. OverVIEW and the Application Legend. ... 8
Figure 2-6. Relating Observed Events with the Source Codeovvvemnviimiiimiericenens 9
Figure 2-7. Boxes (CIrcle) VIEW.oooovvvvviininriemissrmmsssss st 10
Figure 2-8. Time Control WWATHAOW .oveeeveeveemeeneaseesieemessmmsesssesse bt ms s s 11
Figure 2-9. Break-point Control WINAOW oo eeieeeieceneeeceee et 11
Figure 2-10. Excerpt from Tally’s Output for Transpose.coucvvereesmmsmmrmsnesensesesees: 13
Figure 3-1. XINSEIUMENE ooiriuniis et 16
Figure 4-1. Inserted Event Recorders Generating Trace Records.......ooovvrcvineinen. 23
FAgure 5-1. VK'S MEIMU..ooocrumumisumsmsosssrrsssssss s s s o 29
Figure 5-2. VIEWS MEIU .ouuivmmorrimsiesisssssins st e 30
Figure 5-3. CONStrUCt LEGEnd ooovvvvvvvirimmeesnssrmim s s 30
Figure 5-4. Control by Time vs. Break-POINLS ...ccoveeeeereceeereenmeenesrnnesimesmssssneees 31
Figure 5-5. COIOT EAIOT ovvvuuuumeimisneissrsrinsisn st 31
Figure 5-6. OVEIVIEW ..ooiiimmimmmniisisinissrsmss st s 32
FIGUIE 5-7. A BOK .ovovireiisremieeiimmsssss st 33
Figure 5-8. Boxes Views: The Grid and Circle VEISIONScocoveeevericrimninmmnnnsiccees 34
Figure 5-9. Communication LOAA VEIEW .veeeeeeeeieeeeeeecmeneemsssssesesresessnnmesanrs s 34
Figure 5-10. INDOX SIZ€S VIEW w.ovvvvioiivimeivmsimmmssmmsssnssnne s oo 35
Figure 5-11. A Potpourri of Graphs Created by Excel 4.0 From tally Output..... 38
Figure 6-1. An Example of XodefAULS ..ot et 41

Figure E-1. A Potpourri of ParaGraph Views from a Converted AIMS Trace File ... 60

PRECEDING FAGE BLANK NOT FILMED

PAGE V! INTENTIONALLY BLANK

Summary

Whether a researcher is designing the “next parallel programming paradigm”, another
«scalable multiprocessor” or investigating resource allocation algorithms for multiprocessors,
a facility that enables parallel program execution to be captured and displayed is invaluable.
Careful analysis of execution traces can help computer designers and software architects to
uncover system behavior and to take advantage of specific application characteristics and
hardware features. A software tool kit that facilitates performance evaluation of parallel
applications on multiprocessors is described in this paper. The Automated Instrumentation
and Monitoring System (AIMS) has four major software components: a source code
instrumentor which automatically inserts active event recorders into the program’s source
code before compilation; a run-time performance-monitoring library, which collects per-
formance data; a trace file animation and analysis tool kit which reconstructs program execu-
tion from the trace file; and a trace post-processor which compensate for data collection over-
head. Besides being used as a prototype for developing new techniques for instrumenting,
monitoring, and visualizing parallel program execution, AIMS is also being incorporated into
the run-time environments of various hardware testbeds to evaluate their impact on user pro-
ductivity. Currently, AIMS instrumentors accepts FORTRAN and C parallel programs written
for Intel’s NX operating system on the iPSC family of multicomputers. A run-time
performance-monitoring library for the iPSC/860 is included in this release. We plan to
release monitors for other platforms (such as PVM and TMC’s CM-5) in the near future.
Performance data collected can be graphically displayed on workstations (e.g. Sun Sparc and
SGI) supporting X-Windows (in particular, X11R5, MO tif 1.1.3).

1. Introduction

1.1. The Automated Instrumentation and Monitoring System

The Automated Instrumentation and Monitoring System (AIMS) facilitates the tuning of
parallel applications by capturing and visualizing execution data. To accomplish this, AIMS
has three major software components: a source code instrumentor, a run-time performance-
monitoring library, and a set of visualization/analysis tools for examining the collected data.

* The source-code instrumentor, xinstrument, inserts performance monitoring routines
into the application’s source code. The programmer can select from a menu those files
and constructs that should be instrumented.

* The run-time performance monitoring library, or monitor, provides a set of moni-
toring routines that measure and record various aspects of program performance such
as message passing overhead, synchronization overhead, and time spent in different
subroutines. :

* Two tools process and display the execution data. View Kernel (VK) animates the
application’s behavior on the multiprocessor; implementation bottlenecks and load
imbalances can easily be observed. tally provides performance statistics for the entire
program execution. These statistics provide insights into the general behavior of the
program and may indicate where the animated views should be focused. The data
from tally can also be used as input to statistical drawing packages such as GNUplot,
WingZ or Microsoft Excel.

1.2. Background and History

AIMS was developed after evaluating several software prototypes from the research com-
munity and reviewing published ideas on performance visualization. We would like to ac-
knowledge the community’s help/support in letting us adopt, adapt and augment their re-
search prototypes for the parallel-processing environment here at NASA Ames Research
Center. The current version of AIMS uses the POEM source code instrumentation system
developed under the Programming and Instrumentation Environment (PIE) project [Ref. 1]
at Carnegie-Mellon University. AIMS’ monitor adopts many of the event-record conventions
established by PICL, a Portable Instrumented Communication Library [Ref. 2]. Some of the
displays have been inspired by ParaGraph [Ref. 3] and Quartz [Ref. 4]. We also want to
acknowledge the computing facilities provided to us by the Numerical Aerodynamic
Simulation Division, NASA Ames Research Center. AIMS is developed under the sponsorship
of NASA’s High Performance Computing and Communications Program.

We also want to acknowledge the students who spent their summers working on various
features for AIMS: Chris Hanson, Philip Tayco, Jacob Gotwals, and Brian Schmidt. Tarek
Elaydi with Lawrence Berkeley Laboratories was responsible for building an AIMS prototype
for TMC’s CM5. Rob Gordon from Convex Computers Corp. was responsible for building an

AIMS prototype for PVM on UNIX platforms. Both versions will be available through
COSMIC in future releases. Richard Papasin built atopg: a translator that converts our trace
files to a format understandable by ParaGraph [Ref. 3].

1.3. System Capabilities and Requirements

AIMS 2.2 supports Fortran77 andC under the NX (version 2/3.3.1, 3.3.2) operating sys-
tem on the Intel iPSC/860. The instrumentation and visualization tools require a color
workstation running X Windows (version X1 1R5) andOSF/motif (version 1.1.3); these
tools have been tested on Sun SparcStations under Sun O/S 4.0.3 and on Silicon Graphics IRIS
under TRIX 3.3 (or 4.0) running the twm ormwm window manager.

1.4. Outline of Document

Chapter 2 introduces AIMS by running through an example and briefly describing its
commonly used features. Chapters 3, 4, and 5, respectively, describe the instrumentor, the
monitor, and the analysis tools in more detail. Chapter 6 explains how AIMS can be cus-
tomized.

At the end of the manual are several technical appendices. Appendix A (Installation Guide)
describes how to install AIMS. Appendix B (From Source Code to Trace Records) tabulates
the source code constructs and corresponding trace records, along with the monitor routines
that create the records and any necessary conditions for their creation. Appendix C (Trace
Records) details the format and semantics of each trace record generated by the monitor.
Appendix D (Customization Parameters) itemizes the parameters available for customization
purposes. Appendix E (Converting AIMS trace files for ParaGraph) describes a simple tool
that converts our tracefiles for ParaGraph.

2. Using AIMS — An Example

AIMS depicts the actual execution of a parallel program on a multiprocessor. The system’s
three main software components — an instrumentor (xinstrument), a run-time performance
monitoring library (monitor), and a set of analysis tools (VK and tally) — measure and
display a program’s performance. xinstrument modifies the source code so that event timings
and other information from the program’s execution can be recorded. The monitor consists
of a set of routines that are called by the instrumented code. These routines create a trace file
used by VK and tally. VK provides a number of animated views that can be used to observe
the program’s behavior. tally records and tabulates cumulative statistics from the data in the
trace file. Figure 2-1 below illustrates how xinstrument, monitor, and VK /tally interact.

. R _t' M . .
Instrumentation un-time Monitoring

Native Source Code Instrumented Instrumented iPSC/860
: Executable Hypercube

e . | B application code |
CUipimension. . P ; e
carl cgevpe..o) - - ¢aHs to the

“monitor™

e e e

instrument

Trace Files

Visualization/
Analysis

Figure 2-1. Using AIMS to Evaluate Parallel Program Execution

The user should note that in addition to inserting instrumentation at appropriate locations
in the program code, xinstrument generates two important structures: an “application
database” and an “instrument-enabling profile”:

» The application database is used for storing information about the static structure of
an application’s source code. The analysis tools use this information in order to relate
traced events to instrumented constructs in the source code. The instrumentation
programs (see Section 3) build the application database and write it to a file that is

subsequently incorporated at the beginning of the trace file produced by executing the
instrumented apphcatlon program.]
¢ The instrument enablmg profile is basically a table of ﬂags ‘one for each construct in
the application database. This profile is used twice:
i) by the instrumentor to select the constructs to be instrumented; and
ii) by the monitor to select the instrumented constructs to be traced.
Only those constructs whose flags are true in the profile will be instrumented/ traced,;
thus, the use of instrumentation can be switched on/off without recompiling the
instrumented code! (see Chapter 3).
These three components of AIMS will be described in detail in Chapters 3, 4 and 5. We now
give a quick overview of AIMS ability to instrument, monitor and evaluate the performance
of parallel programs.

2.1. The Transpose Program

A sample FORTRAN program is included with the AIMS distribution tape, in a top-level
directory called example/. It contains sixFortran77 files (five source code (. £) files and
one include file (transpose.incl)), amakefile, a monitor option file (.MONITOR), two
AIMS trace files (TRACE . OUT and TRACE2 . OUT), and aREADME file. This parallel program
“transposes” a matrix on the nodes of a hypercube. Initially, the matrix is distributed by rows
among a certain number of processors; at the end of the run, the matrix is distributed by
columns. The code provides two methods for achieving this. One uses “synchronous sends”,
and the other uses “asynchronous sends” with extra buffers. The user is prompted for the
method to use, as well as the dimension of the hypercube and the number of matrix rows per
PTOCessor.

In order to compile the host (transpose_host) and node (transpose_node) pre
grams, the makefile may have to be modified (in particular, the lines specifying the loca-
tion of the host and AIMS libraries). An execution log is shown in Figure 2-2; the program
prompts for some information, and then prints a subset of the rows and columns of the
matrix both before and after the transpose.

2.2. Source Code Instrumentation

xinstrument “instruments” application source code by inserting calls to monitoring routines
into the code. These routines trace the performance of various constructs such as subroutine
invocations, synchronization operations, and message routines. Typing “xinstrument
-overwrite” from the source directory brings up a window as shown in Figure 2-3. There
are three sections in the top-level window of xinstrument. They are, in the order of ap-
pearance, the menu bar, the module table, and the instrument button. On-line help for most
windows can be displayed by pressing the MOTIF help key (usually F1). The module table
lists all of the modules in the application database.

> transpose_host
Enter dimension of cube:

3

Enter number of matrix rows per processor:

40

Enter method

1

Transposing a(n)

[1 or 2]:

320 x

Allocating the cube...
Loading the program onto the nodes...
Nodes have been initialized.

1
41
81

121
161
201
241
281

1
12801
25601
38401
51201
64001
76801
89601

12801
12841
12881
12921
12961
13001
13041
13081

41
12841
25641
38441
51241
64041
76841
89641

25601
25641
25681
25721
25761
25801
25841
25881

81
12881
25681
38481
51281
64081
76881
89681

Transpose 1s complete.

>

320 matrix on a(n)

38401
38441
38481
38521
38561
38601
38641
38681

121
12921
25721
38521
51321
64121
76921
89721

51201
51241
51281
51321
51361
51401
51441
51481

161
12961
25761
38561
51361
64161
76961
89761

64001
64041
64081
64121
64161
64201
64241
64281

201
13001
25801
38601
51401
64201
77001
89801

8-node cube.

76801
76841
76881
76921
76961
77001
77041
77081

241
13041
25841
38641
51441
64241
77041
89841

89601
89641
89681
89721
89761
89801
89841
89881

281
13081
25881
38681
51481
64281
77081
89881

Figure 2-2. Output from Matrix Transpose Example

Modules can be loaded into the application database by selecting the “Load Modules”
item from the “File” menu. A Module Loader Window will appear, as shown in Figure 2-3.
The user should select the “F77 IPSC/860 Host” platform for “transpose_host.£”
and “F77 IPSC/860 Node” for the rest of the modules. The file names of the selected
modules should now appear in the module table in xinstrument's main window. In order to

trace the execution of different subroutines, select all the files in the module table before

enabling the Subroutine option under the Enable By Type item from the Profile menu. All
subroutines in selected modules will be instrumented when the instrument button is finally
pressed. Pressing the Exit item will terminate xinstrument.

The instrumentor has now created an inst/ directory containing the application database
(a file named APPL_DB) and the instrumented source code (in this case, consisting of five

FORTRAN files). The files transpose.incl,makefile, and . MONITOR should be

copied to inst/ from the source directory to complete the set-up.

ORIGINAL PAGE IS
OF POOR QUALITY

transpose_node.f

Figure 2-3. Graphical Interface of “xinstrument”: AIMS’s Source Code Instrumentor

2.3. Linking and Running

The second step in using AIMS is to link, compile, and run the instrumented code. The
makefile has already been set up to link the AIMS libraries (host1lib.a and nodelib.a)
with the transpose program. Compilation involves running “make” again, this time from the
inst/ directory.

The program runs just as before, except that information about certain monitor parameters
is printed out, and a file called TRACE. OUT is created. This trace file is used as the input for
the analysis programs.

Trace files (TRACE . OUT and TRACE2 . OUT) included in the distribution was obtained by
executing the transpose program on an 8-node cube, with 40 rows per processor using
methods 1 and 2 respectively. If the user cannot use iPSC/860 for generating new trace files,
the user may simply copy these into the inst/ directory to try out VK.

2.4. Examining the Data

2.4.1. Creating a sorted trace file with tracesort

Trace files must first be sorted with the tracesort program by typing:

tracesort TRACE.QUT > TRACE.SCRT

2.4.2. Trace file Animation with VK

To run the View Kernel, VK, “cd” to the (uninstrumented) source directory and type:

VK inst/TRACE.SORT

As shown in Figure 2-4, VK’s main window has four VCR-like control-buttons that corre-
spond to “rewind” (l«), “play” »>), “pause” (“), and “single-step” (N) from left to right.
Pressing these buttons has no effect unless one or more views are displayed. Clicking on
Views allows the user to select one of many displays that VK provides. After opening the
OverVIEW and Boxes (Circle) views, the user may hit the P> button to begin playback.

2.4.2.1. The OverVIEW D AIMS Program Animat

The OverVIEW shows the procedures running
on each node, and the messages being passed
between them. As shown in Figure 2-5, the
nodes are represented by rows; node numbers
are listed on the left. OverVIEW uses colors or
bitmaps to depict the various procedures. Thin Figure 2-4. VK’s Main Menu
lines on the OverVIEW indicate messages being
sent between nodes. Rows of x’s at the end of the “play-back” indicate that the nodes are
writing the trace records to disk.

(OverDIEW
OverVIEW
15
i4
13
12
11
10
a
8
7
6
5
4
3
2
1
]
00,0000 TIME (msec) 350, 0000
o~

Figure 2-5. OverVIEW and the Application Legend

OverVIEW is initially set to scroll after 100 msec. of the trace file, so that it shows only 100
msec. worth of data at a given time. This value may be changed by typing “x” to the
OverVIEW window to modify the length (in milliseconds) of the x-axis. Decreasing the scale
will cause OverVIEW to show more detail, while increasing it will allow one to see more of
the trace file at once. The value in the pop-up window can be edited with backspaces and
keystrokes. When finished, the user should hit <Return>, or use the OK button at the bottom
of the window. Changes will be immediately reflected in the OverVIEW. This process may

W

be repeated by pressing the VCR Buttons corresponding to Rewind and Play from the main

menu.

By clicking on the OverVIEW’s window, one can obtain information about the constructs
depicted there. For example, clicking on a procedure bar with the middle button will review
the subroutine running at that time/node point. Holding the <Shift> key down while
clicking will yield a window containing the code for the corresponding subroutine. Similarly,
one can click on a message line with either the left or right buttons. Shift-clicking with the
left button will show the code causing the send, and shift-clicking with the right button will
show the code causing the receive. As shown in Figure 2-6, the exact line is pointed to by a
«a" in the source-code window. Performing these mouse clicks with the <cntrl-> key will
produce “construct tree” views showing the relationship between the observed event and
instrumented points in the source code.

anspose/transposel.f (1)

. e
w3 RRURG

e OMNWIRAN

Figure 2-6. Relating Observed Events with the Source Code

Many features of the OverVIEW may be changed, including the order in which the nodes
are listed and whether or not messages are displayed; the colors in which the procedures are
drawn can be edited; and break-points in the display may be set. These features are explained
further in Chapters 5 and 6. One can also press the MOTIF help key (usually F1) in
OverVIEW's window for help.

2.4.2.2. The Boxes Views

The Boxes views depict the state of each processor and the messages passing between the
processors. The Grid version is meaningful only if the topology underlying the algorithm is a
grid. In that case, “define_node” and ‘define_grid” calls must be inserted into the
code to activate the Grid view. The Circle version works without these calls.

ONINAL PAGE IS 9
OF POOR QUALITY

As shown in Figure 2-7, each pro- N,

ode States Boxes tlirctel

cessor is represented in the Boxes
Views by a rectangle containing five
small boxes. The three central boxes
contain the node number, node state,
and current procedure, from top to
bottom. The Node States Legend
(click on Legends in the main menu,
then on Node States) shows the
possible node states. The column to
the left of the node number and state
indicates the number of messages
pending for the node. (A pending
message is a message that has been
sent but not yet processed by the re-
ceiver.) A full column means 10 or more messages are pending. The column to the right
indicates the node utilization, the proportion of execution time the node has spent doing
useful work. A low value indicates that the node has been blocked for a large amount of time.
Lines between boxes indicate the presence of one or more pending messages.

Figure 2-7. Boxes (Circle) View
and Node State Legend

2.4.2.3. Pausing VK

Since some of VK's views (such as the Boxes views) are not scrolling views, it can be useful
to pause in the middle of the trace file so the display will reflect the program’s state at that
point in time. With VK, the user can choose either to pause at a certain time in the trace file,
or to pause when one or more subroutines are reached. This is done via the “Time Control”
option under the Controls menu.

Setting the “pause” and “resume” times will cause VK to pause and/or resume reading the
trace file when it first reaches a record occurring on or after the specified time. The values in
the Time Control Window may be changed by placing the cursor over the value to be
changed. Unless the <Return> key is pressed when one is done editing; changes will not
take effect. Figure 2-8 was obtained when VK pauses at time 36.76 while viewing
TRACE.OUT.

VK may be paused at a certain instrumented construct via the Breakpoints Enabled option
under the Control menu. In order to identify the break point, specific files containing the
source code have to be selected from the Construct Legend under the Control menu. Figure 2-
9 illustrates this situation with the transform example. Now, if one resets and views the trace
file, VK will stop whenever any node encounters one of the selected constructs. Hitting the

“P>> button in the main window will resume playback.

10

i DuerlIEW)

) OverVIENW

AIMS Program Animator

Modules

AIMS Program Animator

OuverUIEW

ORPNWHEUAN VDY

TIME (mzec)

;

170,0000
J

Figure 2-9. Break-point Control Window

VK has a number of other useful views, as described in Chapter 5. But VK does not provide

cumulative statistics; these are provided by the tally program.

11

2.4.3. Performance Summary with tally

For each node, tally collects the following statistics: lifetime, busy time, volume of messages
received, amount of time spent blocking on a receive, volume of messages sent, amount of
time spent blocking on a send, number of times in a global operation, and the amount of time
spent in global operations. These raw data can be seen by typing “tally
inst /TRACE.SORT | more” from the source directory. In addition, tally provides some
statistics (see Section 5.3) which help in focusing on problem functions and processors.

tally also breaks these statistics down by subroutine, so one can know, for example, as
shown in Figure 2-10, how much time was spent blocking on receives by node 4 in sub-
routine transposel. These statistics are printed out in tables on both a per-node and per-
subroutine basis, as described in Section 5.3.

2.5. Summary

The reader should now have an idea of how AIMS works. The reader should familiarize
him/herself with VK’s other views, read the help windows for information about them, and
try to use AIMS to compare methods 1 and 2 for transposing a matrix.

The remainder of the manual discusses the system in more detail: Chapter 3 discusses the
instrumentor; Chapter 4, the monitor; and Chapter 5 the analysis tools. Chapter 6 explains
the different ways to customize AIMS.

12

Tables for trace file 'T"

ROUTINE SUMMARY
Routine Busy Global Send Recv Life % Comm.
Time Blocking Blocking Blocking Time Commn Index
1 transposel 229399 0.000 246.186 64.887 540.472 57555 0.387
2 transpose_node 100.659 0.000 0.186 160.826 261.671 61532 0.200
3 bin_to_dec 0.508 0.000 0.000 0.000 0.508 0.000 0.000
4 dec_to_bin 0.128 0.000 0.000 0.000 0.128 0.000 0.000
5 <rest..> 0.117 0.000 0.000 0.000 0.117 0.000 0.000
NODE SUMMARY o
Node Busy Global Send Recv Life % Commn
Time Blocking Blocking Blocking Time
0 37443 0.000 34.241 28.154 990.838 62.496
1 39.927 0.000 35.575 28.342 103.844 61.550
2 39.560 0.000 24.994 33.395 97.949 59.611
3 44.796 0.000 29.530 27.495 101.821 56.005
4 39.289 0.000 30.399 28.216 97.904 59.869
STATISTICS FOR ROUTINE transposel
Node Busy Global Send Recv Life % Commn
Time Blocking Blocking Blocking Time
4] 24.754 0.000 34.220 8.191 67.165 63.144
1 27.263 0.000 35.555 8.232 71.050 61.628
2 26.861 0.000 24.967 13.341 65.169 58.782
3 32.139 0.000 29.509 7.381 69.029 53.441
4 26.605 0.000 30.374 8.156 65.135 59.154
STATISTICS FOR ROUTINE transpose_node
Node Busy Global Send Recv Life % Commn
Time Blocking Blocking Blocking Time
0 12599 0.000 0.021 19.963 32.583 61.332
1 12573 0.000 0.020 20.110 32,703 61.553
2 12.605 0.000 0.027 20.054 32.686 61.436
3 12562 0.000 0.021 20.114 32.697 61.580
4 12.589 0.000 0.025 20.060 32.674 61.470
NCPU STATISTIC)
Routine 1 2 3 4 5 6 7 8
transposel 5.342 13.957 7.038 9.436 5.806 8.677 5325 2363
transpose_node 0.289 0.017 - 0.091 0.110 0.063 0.062 0.042 12.329
bin_to_dec 0.000 0.012 0.029 0.032 0.014 0.015 0.008 0.005
<rest..> 0.004 0.003 0.001 0.001 0.001 0.001 0.004 0.006
dec_to_bin 0.000 0.000 0.000 0.000 0.005 0.001 0.004 0.007
<flush> 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ROUTINE CONCURRENCY STATISTIC
Routine 1 2 3 4 5 6 7 8
transposel 5.667 14.060 7.109 9.631 5914 8.584 5.257 2.236
transpose_node 0.599 0.171 0.363 0.006 0.057 0.058 0.092 12.166
bin_to_dec 0.386 0.061 0.000 0.000 0.000 0.000 0.000 0.000
dec_to_bin 0.050 0.039 0.000 0.000 0.000 0.000 0.000 0.000
<rest..> 0.038 0.002 0.000 0.000 0.000 0.000 0.005 0.005
<flush> 0.000 0.000 0.000 0.000 __0.000 0.000 0.000 0.000

Figure 2-10. Excerpt from Tally’s Output for Transpose

13

3. Source Code Instrumentation

AIMS’ instrumentors insert calls to monitoring routines into code. Such calls replace or
surround instrumentable constructs, such as message sends and receives, synchronization
operations and subroutine invocations.

AIMS provides two instrumentors, xinstrument and instrument, for instrumenting source
code. xinstrument is window-based, while the simpler instrument is not. The latter is,
therefore, useful in makefiles and shell scripts.

The xinstrument and instrument commands are described in details in the next two sec-
tions. The third section describes instrumentor directives that can be inserted into source code
by hand in order to direct the automatic instrumentation. A concise summary of the
information presented here is available as on-line help for xinstrument.

3.1. xinstrument

The xinstrument program instruments source code with minimal user-intervention. An X-
based interface facilitates the instrumentation of source files as well as of program constructs
within those files. These instrumentor specifications, called profiles, can be saved for later

use.

3.1.1. Calling xinstrument

xinstrument is invoked as follows, from the directory containing the source code:

Xinstrument [-adb <application database>]
[-oadb <output application database>]
[-overwrite] :
[-help] i
[-output <directory>]
[-origin <directory>]
[-platform <option>]
[-run_pp] (run the preprocessor)
[-no_pp] (do not run the preprocessor)
[-pp_command <command-template>]
[-pp_options <switches>]
<file(s)>

The application database is used by xinstrument to determine which files to consider for
instrumentation. The output application database is used to store information about those -
files and is later used by the analysis tools to relate the trace file to the source code. If no -
database is specified on the command-line, xinstrument will use the file APPL_DB in the -
output directory. In some cases, the output directory may already exist; xinstrument takes a

14

precautionary measure and does not overwrite an existing file that already exists unless the
-overwrite flag is specified.

xinstrument places the instrumented code in the output directory. Note that uninstru-
mented files, such as makefiles and include files, are not written into this directory by the
instrumentor, and must be copied over manually after the directory has been created. 1f no
output directory is specified, the directory . /inst is used.

xinstrument does not require that all source files be found in the same directory. Thus, if
multiple paths are utilized, the -origin option can be used to define the root of a multi-direc-
tory source tree. If no root is explicitly specified, the current working directory is used by
default.

If any files are specified on the command-line, xinstrument loads them into the application
database using the platform defined with the -platform flag. These files can be instrw-
mented along with any others that may already have been stored in the database. The plat-
form options are £77-nx-host, £77-nx-node, c-nx-host and-nx-node. If the file
to be loaded is a FORTRAN file and should be run as a host program, the £77-nx-host
option should be used. Similarly, the £77-nx-node option should be utilized for
FORTRAN node programs; c-nx-host for C host programs; c-nx-node for C node pro
grams. If a -platform flag is not used, the platform is assumed to be c-nx-host. Files
should be reloaded into the database whenever they are modified. While it is possible to in-
strument a newly modified file without reloading it into the database, this may cause AIMS to
fail.

If the code to be loaded does not need to be run through a preprocessor, the -no_pp flag
should be used. Otherwise, the user should first define the preprocessing command and
options using the -pp_command and -pp_options flags and then use the-run_pp flag.
AIMS assumes that the preprocessing command sends the “preprocessed” file to stdout.
Thus, preprocessing commands that do not utilize this can not be used.

If the -help flag is present, xinstrument prints a usage message and exits.

xinstrument will also accept standard X options such as -£n (font), -bg (background
color), and - £g (foreground color).

3.1.2. Using xinstrument

There are three sections in the top-level window of xinstrument. They are, in the order of
appearance, the menu bar, the module table, and the instrument button.

The Files menu contains four options: Use Database, Load Module(s), Copy File(s) and Exit.
The Use Database option allows a previously defined application database to be loaded into
the modules list. The loading of this file containing the database is done through a file
selection window. A file is selected by clicking on the appropriate file name with the left
mouse button. Once the menu item is highlighted, it can be loaded by pressing OK or
<return>.

15

Using the Load Modules file selection window, individual modules can be loaded into a list
of modules to be instrumented. Single clicking the left (CTRL-left) mouse button or drag-
ging it will select (deselect) files. The desired platform is selected under the Platform menu;
F77 IPSC/860 Host is used for FORTRAN host programs, F77 IPSC/860 Node is used for
FORTRAN node programs, C IPSC/860 Host is used for C host programs, and € IPSC/860 Node
is used for C node programs. Once all files have been selected, loading will take place if the
Load or <return> button is used. The Donebutton is selected to dismiss the window.

transpose_node.f

The middle panel of the main
window shows all of the files in (
the application database. Files RS inctrumentar 2.2
can be selected by clicking the left
mouse button on top of the file
name, and multiple files can be
selected using CTRL-left mouse
button; the selected files are
highlighted, and will be instru-
mented when the Instrument but-
ton is clicked. Within each file
are a number of instrumentable
constructs. One can select the
constructs to be instrumented by
double clicking the left mouse
button on the file of interest. This brings up a list of all instrumentable constructs for that
file, as shown in the window titled transpose_node. f of Figure 3-1. Clicking on conr
structs will select (or deselect) them; selected constructs are highlighted, and will be in-
strumented if the file is instrumented’. By default, only system-level constructs, such as
message routines and global operations, will be selected for instrumentation. Subroutines
will not be selected. Note that the selected constructs will be instrumented only in the file

Figure 3-1. xinstrument

currently selected for instrumentation.

The top three options in the Profile Operations panel allow one to select all constructs, de-
select all constructs, or select only the default constructs of the application (as specified by
AIMS). The next two options are used to enable or disable constructs by type. These op-
erations will apply to all of the files highlighted in the Files panel. With the Save and Load
buttons, one can store and reload instrumentation profiles. When either of these buttons is
pressed, a dialogue box will appear requesting the user to enter the name of the file contain-
ing the profile. Hitting Save or Load or <return> will save or load the file, while Cancel will
discontinue the operation.

T Certain constructs will always be instrumented, such as program starts and terminations. Others will be
instrumented only if related constructs are instrumented, such as subroutine returns.

16

The third menu contains five user-settable options: the output directory, the origin directory,
the run preprocessor selection, the set preprocessor command, and the set preprocessor options.
The output directory specifirés»’,;if‘here the instrumented files will be saved. Note that changes
to the output directory will not take effect until OK or <return> has been pressed in that
dialogue box. If the files require preprocessing before loading the modules, the user must
give the preprocessing command by selecting the Set Preprocessor Command option and then
selecting the Run Preprocessor option of the menu.

Pressing Instrument causes all selected files to be instrumented. The resulting files will be

saved in the output directory with the same name as the original source file. The Exit button
under the File Menu terminates the application.

3.2. Batch mode instrumentors

The instrument program is a simplified version of the xinstrument program. It is not X-
based, and can therefore be useful in makefiles and shell scripts. The appropriate binary
changes depending on the desired platform. The name of the binary files follow the form:

inst-<platform>;
where <platform> is either c-nx-host, c-nx-node, £77-nx-host or £77-nx-node.

3.2.1. Command-line syntax

The command-line syntax of using the batch mode instrumentor is:
inst-<platform> [-adb <application database>]

[-oadb <output application database>]
[-overwrite]

[-origin <directory>]

[-output <directory>]

[-help]
[-run_pp]l (run the preprocessor)
{-no_pp] (do not run the preprocessor)

[-pp_command <command-template>]
[-pp_options <switches>]
[-verbose]

[-enable <option>]

<file(s)>

The profile option is 211, default, or the name of a file containing a stored profile.

The -adb, -ocadb, -output, -origin, -overwrite, -run_ppsno_pp,
-pp_command, -pp_options and-help switches function as with xinstrument If the
-verbose flag is present, status messages are printed.

The -enable option is used to specify which constructs are instrumented. By default,
AIMS instruments only system-level calls, such as message routines and global operations,

17

and no subroutines. If the all option is specified, all constructs are instrumented. (Note
that selecting all may generate a VERY LARGE tracefile!) If the option is neither default nor
all, the instrumentor expects the name of a profile file. (Profile files are generated by
xinstrument, as described in Section 3.1.2.)

The -enable switch may appear more than once on the command-line; each file will be
instrumented using the switch that most closely precedes it. At least one source file should
be specified on the command-line.

3.2.2. Differences with xinstrument

The batch mode program instruments only those files listed on the command-line.
Therefore, at least one file should be specified on the command-line. xinstrument, however,
looks for files in the application database, as well as on the command-line, so it is possible to
use xinstrument without specifying any files at all.

The instrumentor instruments all of the files that are specified on the command-line.
xinstrument loads files into the database, but one can then choose not to instrument some
files.

The batch mode instrumentor is not X-based, so it has platform specific calls and ~enable
switches to perform the functions of some of xinstrument’s buttons. Also, because it is not
X-based, it can easily be called from makefiles and shell scripts.

3.3. Instrumentor Directives

The automatic instrumentation provided by xinstrument may not be sufficient for your
purposes. You may want to instrument constructs that xinstrument does not recognize, or
you may find that you only need to instrument only a few rather than all of the iterations of a
loop. To handle these and similar situations, AIMS prowdes elght instrumentor directives.
The instrumentor replaces these directives with calls to monitor routines, just as it replaces

calls such as csend.

i

3.3.1. Using Instrumentor Directives

Instrumentor directives may be simply inserted into a program as subroutines. For ex-
ample, the line

CALL insert_marker(‘'Starting loop’) B

marks the beginning of a loop. When the program is executed, the corresponding monitor -
routine will generate a MARKER trace record, which will be displayed by VK's OverVIEW.

The user can compile and run uninstrumented source code containing instrumentor di-
rectives if the code is linked with the monitor libraries, as described in Sectlon 4 2. The rou-
tines have no effect in uninstrumented code.

18 =

3.3.2. begin_trace and end_trace

The begin_trace andend_trace directives allow you to turn tracingon and off.
While the automatic instrumentor allows only that certain selected constructs be always
traced, it doesn’t permit one to specify general conditions for tracing. On the other hand, in-
serting begin_trace andend_trace directives (e.g., inside IF statements) allows one to
trace only when something unusual happens, or when some value gets particularly large.
These directives can be inserted anywhere you can place a CALL statement. If two
begin_trace’s (end_trace’s) are called without an intervening end_trace
(begin_trace), the second call has no effect.

3.3.3. begin block and end_block

The begin_block andend_block directives allow you to treat a segment of a subrouw
tine as a subroutine in its own right. The analysis tools will collect data for this region just as
for any subroutine. You can use these directives either to provide more detailed monitoring
by instrumenting small blocks within an instrumented subroutine or, less detailed, by
creating blocks around calls to subroutines and deselecting those subroutines so that they are
not instrumented.

These directives take a single string (CHARACTER *n) argument, which is the name you
want to associate with the block. For example, you might insert calls to begin_block
(‘Initialize’) and end_block (‘Initialize’) around an initialization section. The string argo-
ments in a pair of calls should match.

Blocks may be nested, but they should not overlap. In general, blocks should be structured
in such a way that the statements inside could be replaced by a subroutine. This means, for
example, that constructs such as the following are not allowed. (Note that such placements
are allowed for begin_trace and end_trace.) '

CALL begin_block('Bad Block’)
IF (1 .EQ. 1) THEN

CALL end_block(‘'Bad Block’)

END IF

3.3.4. insert_marker

The insert_marker directive can be used to get timing information at any point in the
code where you can call a subroutine. This directive takes a single string (CHARACTER*n)
argument, which is the name of the marker. The marker will be displayed by VK's
OverVIEW as a vertical line in a procedure bar (see Section 5.2.1). OverVIEW will also print
out the time each marker occurred.

19

3.3.5. £flush_trace

The flush_trace directive allows you to indicate when you want the processor to write
its trace records to disk. As described in Section 4, each node stores the records generated by
the monitoring routines to a buffer in the node’s memory; this buffer is periodically flushed
(written to disk). While the monitor will automatically do a flush when the record buffer fills
up, that strategy may cause flushing to occur at a time that will significantly disturb the
program’s execution. Inserting flush_trace directives will help to prevent undue
perturbation, especially when the record buffer is relatively small. A flush_trace can be
inserted anywhere a CALL statement can appear.

3.3.6. define_grid and define_grid node

If your algorithm has an underlying grid topology, the define_grid and
define_grid_node directives can be used to enable VK's Boxes (Grid) view. That view
displays processor nodes in a rectangular grid, with each intersection occupied by a single
node. The define_grid directive specifies the dimensions of the grid, and
define_grid_node specifies the location of a node on that grid.

The define_grid directive takes two positive integer parameters, indicating the number
of rows and columns, respectively, in the grid: “CALL define_grid(rows, cols)”.
The define_grid_node directive, which must be called from a node, also takes two
integer parameters. They specify the coordinates of the calling node on the grid: “CALL
define_grid_node(i, 3j)”,wherel <=i<=rowsandl <=j <= cols.

3.4. Limitations of the Instrumentors

3.4.1. Using Labels

The instrumentors do not account for labels when inserting instrumentation. This can
cause problems. For example, when the instrumentor sees a FORTRAN END statement, it
inserts a few monitor routines before that statement (as shown in Example 3-1).

Source Code Instrumented Code
send i1d = isend(...) send_id = async_send(...)
END IF END IF
END CALL stop_trace

CALL mon_term
CALL proc_end(3,0)
END

Example 3-1: Instrumentation of an END Statement

If a label precedes the END statement, these calls are not inserted between the label and the
END statement, but rather after the line preceding the END statement. This can result in the

20

instrumented program hanging, since a GOTO statement elsewhere in the code will go right to
the END statement without executing these routines.

Source Code Instrumented Code
send_id = isend(...) send_id =
END IF END IF
10 END CALL stop_trace

CALL mon_term
CALL proc_end(3,0)
10 END

Example 3-2: Faulty Instrumentation of a Labeled END Statement

As a result, we recommend that labels be used with CONTINUE statements, with code
continuing on subsequent lines.

Source Code Instrumented Code
send_id = isend(...) send_id =
END IF END IF
10 CONTINUE 10 CONTINUE
END CALL stop_trace

CALL mon_term
CALL proc_end(3,0)
END

Example 3-3: Using a CONTINUE Statement with a Label

3.4.2. Warning Messages During Compilation

The instrumentor inserts instrumentation conservatively, which may result in the
placement of instrumentation calls in positions where they will never be reached. For ex-
ample, the three calls inserted in the previous example are inserted before both STOP and
END statements. If a STOP precedes an END statement in the source code, the three calls
following the STOP will never be reached. The compiler may warn you in such cases about
the presence of unreachable statements. They will not cause an error, however.

3.4.3. Warning Messages During Execution

At the end of an instrumented host program’s execution, a message indicating that the host
is doing an illegal iprobe may appear:

(host) iprobe: No pid defined

This is again due to conservative insertion. Since it happens only after the monitor has
finished tracing, the erroneous probe does no harm. Sometimes at the beginning of an instru-
mented host program’s execution, the same error may occur but will stop execution. This
happens when a construct (usually a loop, but sometimes a subroutine) is instrumented

21

before a call to Load. When this occurs, re-instrumentation of the code without those con-
structs selected will fix the problem.

3.4.4. What is Not Instrumented

The constructs that are instrumented are listed in Appendix B. Note that cprobe,
csendrecv, gcol, gcolx,gsendx, hsend, hsendrecv, isendrecv, killprocpsg-
cancel, waitall, andwaitone, among other constructs, are not instrumented automati-
cally. To record information about those routines, you can use the insert_marker and
block_begin/end instrumentor directives.

3.5. Preprocessing Programs

C programs (and to a lesser extent, FORTRAN programs) rely heavily on the preprocessor
to resolve macro definitions before the actual parser is applied to the source code. Since the
instrumentors only have native parsers in them, it may be necessary to pass the source code
through a preprocessor stage in order for the code to be recognizable by the parsers. To this
end, AIMS provides mechanisms by which the user can specify how (as well as if) a file
should be preprocessed.

The preprocessor invocation is specified as a straight command (minus the file names).
Since the invocation may differ for host programs and node programs, there can be separate
templates for each of these cases. For example, the invocation for a C preprocessor on a node
module might be: icc -E. The command may be specified in an environment variable, on
the command line, under the Options menu of xinstrument or as the default given at compile
time. Two environment variables are recognized by AIMS instrumentors (the instrument
programs and xinstrument): ATMS_PP_COMMAND & AIMS_PP_OPTIONS. In addition,
AIMS instrumentors can accept these definitions on the command line using the following
switches:

-pp_command <preprocessor command>
-pp_options <switches>

To specify the preprocessor command as the default one given at compile time, the file
Makefile.template in the instrumentor’s directory should be modified. Within this
file, under the heading for the desired platform (£77-nx-node, f77-nx-host, c-nx-
node or c-nx-host) are the platform specific variables: PP_COMMAND and
PP_OPTIONS. In all cases, definitions given on the command line override those specified in
environment variables which, in turn, override their default values.

22

4. Run-Time Performance Monitoring Library

The run-time performance monitoring library contains a set of routines which function as
“event recorders” by measuring the behavior of the instrumented program on a parallel
machine. These event recorders are placed by the instrumentor into the instrumented code;
they are responsible for generating a trace file to be used by the analysis tools. Figure 4-1
illustrates the basic function of event recorders during the monitoring phase using the
example from Figure 3-1. Note that the event recorders write records into a buffer that is
only intermittently written to disk. Since writing the buffer to disk is a time-consuming
process that can affect the execution pattern of the application, AIMS provides a number of
ways to specify the size of the buffer and how often the buffer is emptied. The following
sections describe the monitor’s parameters, and explain the process of linking the monitor’s
routines with instrumented code.

" Record Buffer

SUBROUTINE xyz 1366730
CALL proc_begin(3,0) 91460 7 2 ...

CALL sync_send(...,3,1) 15 1 1032 7 2 ...

312451730

CALL sync_recv(...,3,2)

CALL proc_end(3,0)
END

.~ Figure 4-1. Inserted Event Recorders Generating Trace Records

4.1. Monitor Parameters

The operation of the monitor is controlled by several user-settable parameters, such as the
name of the trace file and the size of the monitor buffer. These parameters are set in the
initialization file . MONITOR which must reside in the directory from which the instrumented
application is launched. Although all the parameters described below have default settings,
they may not be appropriate for all applications. Experimentation may be required since it is
sometimes difficult to exactly predict what level of monitoring is needed. Any subset of these
options may appear in any order in the .MONITOR file. A section explaining how to set their
values follows.

4.1.1. TRACE_FILE

All generated events are ultimately written to a disk file. The TRACE_FILE parameter
specifies the name of that file. Because trace files can be several megabytes long, it is impor-
tant to place the file where there is enough storage. If the iPSC/860 Concurrent File System
(CFS) is the one of choice, this trace file will only contain data from the processor nodes; the
host data will be written to a different file (see the H_TRACE_FILE parameter). The default

23

file name depends on other settings in the configuration. If the application is running host-
less or if the file mode (see below) specifies to use the CFS, then the default is
/cfs/$USER/TRACE. QOUT, otherwise, it is ./TRACE. OUT.

4.1.2. H_TRACE_FILE

The file specified by the H_TRACE_FILE parameter contains the events generated by the
instrumented program run as the host. This file is used only when there is a host program
(see below), and the nodes have been directed to use the CFS. The default file name for
H_TRACE_FILE is HTRACE.OUT.

4.1.3. FILE_MODE

The FILE_MODE parameter specifies the file system being used to store the trace data
output by the monitor. A value of 1 indicates the CFS file system, which is the fastest way to
write large trace data files to disk. A value of 0 indicates that the nodes should write to a file
system attached to the front-end host.

The nodes write to the front end by sending messages to the host; the host then writes the
records to disk. Specifically, when a node flushes its record buffer, it repeatedly calls csend
to transmit small blocks of data to the host until its buffer is empty. The host repeatedly
probes for these messages and writes the data to disk as they are received.

Writing to the CFS is typically much faster than the process for the frond end described
above; thus, the use of the CFS is recommended. Note that if the CFS is used (i.e.,
FILE_MODE = 1), the file specified in the TRACE_FILE variable must have the appropriate
CFS path in it.

4.1.4. HOST_PROGRAM

The HOST_PROGRAM parameter informs the monitor whether the application has an in
strumented host program. The default value for this parameter is 0, which indicates no host
program is being used. If this parameter is not set to 1 when a host program exists, the
monitor initialization process may fail. Note that hostless programs must locate the trace file
on the CFS, as described in the previous section.

4.1.5. TRACE_LEVEL
The TRACE_LEVEL parameter determines when the monitor will generate trace records.
The lower is the value of this parameter, the fewer are the records produced. There are four
possible levels, the default being level 3:
level 0 — generate TRACE_BEGIN, TRACE_ENDBLOCK_BEGIN, BLOCK_END, and
MARKER records
level 1 — generate level 0 records + PROC_BEGIN and PROC_END records

T Note that hostless programs therefore need to have their trace files on the CES.

24

level 2 — generate level 1 récords + GLOBAL_BEGIN and GLOBAL_END records
level 3 — generate level 2 records + message-passing records

Since the default level is 3, the monitor generates all records unless specified otherwise.
Some records will be generated even if a negative level is specified: MON_BEGIN,MON_END,
FLUSH_BEGIN, FLUSH_END, DEFINE_GRID, andEFINE_GRID_NODE.

Appendix B lists the monitor’s event recorders (with the source code constructs they re-
place or surround) and the trace records they produce.

4.1.6. BLOCK_ON_ALL_SYNC

If the value of the BLOCK_ON_ALL_SYNC pararmeter is non-zero, the monitor will generate
a pair of records for each call to csend and crecv, one at the beginning and one at the end.
This allows the analysis tools to determine the length of time the node was blocked on those
routines. If the value is 0, however, the monitor will generate only one record for a csend,
indicating the start of the send. Thus the analysis tools will not count the time spent inside
the csend as blocking time, but as busy time. In addition, the monitor will execute an
iprobe before each crecv, and if the probe indicates that the message is present, it will
generate only one record for the crecv at the completion of the call. Thus the time spent in
such crecvs will also be considered busy, rather than blocked.

A zero value will result in a smaller trace file than a non-zero value, but will cause the
monitor to do some extra probes (prior to crecvs), and the analysis tools will not indicate
blocking on csends and quickcrecvs. Thus a non-zero value is likely to be a good choice
when the trace file is not too big and when the time spent blocking on csends may be signif-
icant.

The default for BLOCK_ON_ALL_SYNC isl.

4.1.7. BUFFER_SIZE

The BUFFER_SIZE parameter sets the number of bytes to be allocated for the temporary
storage of trace data on each node. Itis important not to set this value too low or too high for
the application. If BUFFER_SIZE 1s very small, the monitor will flush data often and thus
affect overall performance. 1f BUFFER_SIZE is very large, the monitor may compete with
the application for node memory resources. The default buffer size is set at 256 kbytes.

4.1.8. FLUSH_MODE

The monitor provides two different policies for flushing performance data or trace records
from node memory to disk. The policy chosen will determine the action taken when the
node’s record buffer fills up. 1f the FLUSH_MODE is non-zero, the default, a node will flush
its buffer when the buffer is full. If the value of FLUSH_MODE is 0, the node will not flush its
buffer until an explicit flush_traceis called (see instrumentor directives in Section 3.3)or
the program terminates. The nodes cease collecting data until the buffer is emptied. The
user may, therefore, lose some data if the buffer is full before flush_traceis called.

25

The default option, emptying buffers whenever they fill up, can cause irregularities in the
program’s execution, especially if the data buffer is small and flushing is slow. Setting the
value of FLUSH_MODE to 0 allows the user to specify when data should be flushed, making
the affect on the pattern of execution as small as possible.

4.1.9. PROFILE

A subset of instrumented constructs to monitor may be selected by specifying a profile. The
profile is a table of Boolean flags containing an entry for each construct found in the
application. Profiles are created by xinstrument (see section 3.1.2). The default is to moni-
tor all instrumented constructs. The TRACE_LEVEL parameter takes precedence over any
profile setting.

4.1.10. APPL_DB_FILE

The instrumentors encapsulate information about the structure of an application program
into an application database file which is subsequently included in the trace file by the moni-
tor. By default, the instrumentors store this information in a file named APPL_DB located in
the directory containing the instrumented code. If the name of the application database was
changed in xinstrument (see section 3.1.1) from the default to another name, that new name
must be specified using this parameter.

4.1.11. Examples of .MONITOR Files

To set the values for the above parameters, a file called . MONITOR should be created. Lines

in that file should have the form:
<parameter name>: <parameter value>

Lines beginning with a “#” denote comments. It is important that the last value in the ini-
tialization file is followed by a <Return>; otherwise, the monitor will not read the final pa
rameter. The .MONITOR file should be placed in the directory from which the instrumented
code is run. The following examples may give a clearer understanding of some of the uses of
the .MONITOR file to control the behavior of the monitor.

Example 4-1: 1f a hostless program is to be run and is expected to generate a lot of data, an
initialization file could look like this.

TRACE_FILE: /cfs/mydir/BIG_TRACE
H_TRACE_FILE: HOST_TRACE
FILE_MODE: 1

FLUSH_MODE: 0

The CFS file system is used, so the nodes can flush quickly (since they'll have to flush often).
The FLUSH_MODE is set to 0, so the flushes can be indicated in the code. Again,
BLOCK_ON_ALL_SYNC is left at1, in case blocking on csends is significant.

26

Example 4-2: If a program that potentially produces volumes of data is to be used, but
perturbation is to be minimized, the size of the trace file is to be limited, and the focus to be
only on a few things, then the . MONITOR file should look like that shown below.

TRACE_FILE: /cfs/mydir/FOCUSED_TRACE
H_TRACE_FILE: HOST_TRACE

FILE_MODE: 1

HOST_PROGRAM: 1

BUFFER_SIZE: 524288

TRACE_LEVEL: 0

The buffer size is increased so that only one flush is done, at the end. The TRACE_LEVEL is
set to 0; thus, the user can insert instrumentor directives such as insert_marker and
begin_block to instrument only those constructs of interest.

4.2. Linking with the Monitor

In order to compile instrumented code, it must be linked with the monitor’s libraries. Node
programs are linked with the node library nodelib. a, and the host program, if it exists,
with the host library host1ib.a. The location of these libraries is specified during
installation (see Appendix A). The original source code should also be linked with the ap-
propriate stub file found in the misc directory (either stub. c or stub. £) if it contains in-
strumentor directives such as insert_marker, begin_block, or flush_trace. For
example, a makefile used for compiling instrumented code might contain the following lines:

#Specify location of AIMS’ mqn_itor

MON_LIB = $(AIMS_DIR)/1lib

#Link application with monitor libraries
host: _
$(F77) -o host_program $ (HOST_OBJS)\
" $ (MON_LIB) /hostlib.a $(HOST_LIB)
node:
$(F77) -o node_program $ (NODE_OBJS)\
$ (MON_LIRB) /nodelib.a

27

5. Examining the Trace File

The VK and tally programs offer different ways of examining the data collected by the
monitoring routines. With VK, the trace file can be viewed using a variety of animated views
that depict the program’s changing state as time passes. tally collects and tabulates statistics
that reflect the cumulative activity of the program. These two tools are described below, in
sections 5.2 and 5.3. Section 5.1 covers the preliminary step of sorting the trace file.

5.1. Sorting the Trace File

Before using the analysis tools, the trace file must be sorted. While the records for each
node are already sorted by time within the trace file, the records for different nodes are inter-
leaved, and may therefore be out of order. AIMS provides a tracesort tool for sorting trace
files.

tracesort <tracefile> > <sorted tracefile>

tracesort sorts the events in an AIMS trace file and writes the output to stdout.

5.2. The View Kernel

The VK (View Kernel) program animates the trace obtained by executing a parallel pro-
gram. VK's animated views present information such as: the different constructs that were
running; the messages sent between nodes; how long messages waited before being pro-
cessed; and how long nodes were blocked. Some of the displays scroll along as time passes,
showing a segment of the program’s history, while others show each state in sequence
(drawing over the previous state). Several displays can be viewed at once. The trace file can
be stepped through or visualized at high speed, stopping only when certain subroutines are
invoked. A source code click-back capability allows easy examination of the source code
constructs responsible for trace file events pictured on the display. There are also many ways
to custornize the displays to better reflect the design of the monitored program.

The displays that VK provides are: an OverVIEW; two “Boxes” views, Circle and Grid; and
two communication views, Communication Load and Inbox Sizes.

5.2.1. Invoking VK

VK [-start <start time>]
[-stop <stop time>]
[-fixcolors]

[-help]
[sorted trace file]

VK should be invoked from the uninstrumented source code directory, so that the source
files are available for source code click-back. It may be called with up to five arguments, all

28

optional®. The application database is used to relate identifiers in the trace file with
constructs in the source code. The database that VK uses to view a trace file should therefore
be the same as the one used to instrument the program that produced the trace file. To
ensure this, the monitor inserts the correct database at the beginning of the trace file, which
the VK then reads.

VK's -start and -stop switches allow the specification of any time segment of the trace
file to be viewed. (Pressing the P button after VK pauses continues past the time where the
VK stopped.) The values should be non-negative real numbers, which represent the time in
milliseconds. If no -start flag is present, VK will begin viewing at the beginning of the
trace file. 1f no ~stop flag is present, VK will view to the end of the trace file (or 1,000,000
msec, whichever comes first).

The overall effect of the -fixcolors flag is to disable VK’s color editor, which allows the
change of colors associated with various constructs. The -fixcolors option should be
used if VK indicates that it is running out of space for allocating colors. This situation can
occur if running several VKs at once, or if viewing a trace file with a very large number of
subroutines and blocks. If a message appears indicating that VK cannot allocate a sufficient
number of colors appears, VK should be restarted with the -fixcolors flag on the com-
mand line. If this message appears when VK is started, and others are running, the execution
of one of the other VKs should be halted and then restarted as well with the -fixcolors
flag.

If the -help flag is present, VK prints a usage message and exits.

The trace file specified on the command line should be a sorted trace file. If no trace file is
specified, the file inst /TRACE. SORT is used. VK can view only one trace file at a time.

5.2.2. Using VK
After VK is invoked, a menu like the one in
Figure 5-1 appears with a number of buttons. The
button causes VK to start reading and displaying
the trace file. 1f VK was paused in the middle of the
file, pressing P will cause it to continue beyond that point. Clicking on P> at the end of the
trace file has no effect; the M4 button will reset VK to the beginning of the trace file. Clicking

Figure 5-1. VK’s Menu

on Il at any time will pause VK. To step through the trace file one record at a time, use the
b button.

T This X-based application also accepts the -bg, -fg, -bd, -bw, -fn, and -xrm switches. (See Section
6.1.1 for a description of these.)

29

As shown in Figure 5-2, clicking on Views
brings up a list of ways to display the trace file.
VK’s views are: OverVIEW, Boxes (Circle),
Boxes (Grid), Communication Load, and Inbox
Sizes. OverVIEW is a scrolling view that shows
the procedures running on each node, and the
messages that are passing between the nodes.
The Boxes views display the status of each node
at the time of the last trace record. The status
information includes the node utilization, the
number of pending messages, and the
subroutine that is executing. The
Communication Load view is a scrolling view
that displays the message volume over time. Finally, the Inbox Sizes view displays the

AIMS Program Animator

Figure 5-2. Views Menu

volume of pending communication between each pair of nodes.

Many views may be displayed simultaneously, provided there is only one of each type. To
select a view, the Views button should be clicked on, showing a list of views, one of which
must be selected. To close a view, click on the view’s name.

If either the identification of a construct in a view is indeterminable, or a view is displaying
something which is not understandable, or the set of various parameters is forgotten, a Help
window can be displayed by typing “F1”, “h”, or “H” in the window. Clicking on the Dismiss
button of the Help window will remove it.

The Construct Legend (see Figure 5-3) is
displayed when the Legends button is clicked.
It gives a list of filenames used in producing the
trace file. By clicking with the left button on
any file name, a construct view window for that
file appears. The Node States Legend relates the
colors/bitmaps used in the Boxes views with
node states. The legends are selected by clicking
on the appropriate button in the Legends menu,
just as with the Views menu.

The By Time button, under the Controls menu,
allows the specification of start and stop times, Figure 5-3. Construct Legend
as on the command line, so VK will pause in the middle of a trace file at a specified time.
Times should be specified in milliseconds. To change one of the times, place the cursor over
the value and use the backspace key to edit the value. It is important to remember to hit the
<Return> key after the changes have been made. Failing to do so will cause the VK not to
stop or resume at the specified times.

30

Clicking on any construct iri the Construct
View window mentioned above, and then se-
lecting the Enable Breakpoints option of the
Controls menu, causes the VK to stop when-
ever any node enters one of the selected con-
structs. (See Figure 5-4.) Note that since
the Constructs View does not allow the

selection of constructs that were not
instrumented, VK cannot break at these
constructs.

VK also provides a color editor, Figure 5-5,
for modification of colors assigned to the
various constructs of an application. For
example, it might be useful to color similar
routines the same color, or to change colors
to heighten contrast. To invoke the color
editor, use the ALT-CTRL-right mouse
button. A new window will appear to help
in the adjustment of the color assignment for
that construct. Not all colors may be
changed; the color editor will display an
error window if (1.) a change is attempted to
a fixed color or (2.) a construct does not
have a color to change.

The following sections describe each of
VKs views in turn. The final section covers
some ways to adjust the speed at which VK
processes trace records and mouse events.

5.2.3. OverVIEW

The OverVIEW is a scrolling view that dis-
plays the procedures being executed by the
processors and the messages passing between the processors. Each node is represented by
one row of the display, with its number on the left. Figure 5-6, for example, shows a program
that ran on sixteen nodes. Constructs are indicated by different colors. Messages are drawn
as lines between processors. Periods during which a node is blocked, such as when it is
waiting for a message, are shown in the view’s background color. The figure shows many
instances where a node is blocked, usually waiting for a message. Node 0, for example, is
blocked six different times during the period displayed. Any markers the user has set (with
insert_marker diredives) are drawn as thin black lines within procedures, and messages

Figure 5-5. Color Editor

31

indicating the name of the marker and the time it occurred are printed. A special bitmap is
used to show when the nodes flushed their record buffers.

OverVIEW
15 II"-" o y h 7 v NS | _J—
12 «‘ﬁ ftigts 1} - R\ A —
1 “O‘}‘:ﬁ“é‘f‘] o L
v 4""" ’ff'—' >~r"'¢' ”n'-—'}
S g
ey, el (o ’ih :
g -J.‘.’t\w) /) : \‘ A f.. : o —
0 I : =Ty v i g1
363.0544 , TIME (msec) ~ 386.2544

Figure 5-6. OverVIEW

Clicking on a message or procedure bar causes VK to print some information about the
relevant construct. If a desired construct is covered by messages, click with the middle but-
ton. This causes VK to give information about the procedure, rather than a message. If the
<Shift> button is held down while clicking the middle button, a window containing the
code that initiated the event will be displayed. If a message is clicked on with the lefuright
button, the following information will be displayed in the shell window used to start up the
VK: the time of the send/receive, which node was sending/receiving, the type of the message,
and the message size. The code relating to the sending of the message will be displayed if the

<Shift> key is pressed while clicking the left mouse button. The code relating to the

receipt of the message will be displayed if the <Shift> key is pressed while clicking the

right mouse button.

Key Presses:

32

Key Action
borB change bar width
dorD toggle whether dividers are drawn
F1,h,orH display help window
jor] change jump factor
mor M toggle whether messages are drawn
oorO change node ordering
porP print pending messages
rorR toggle whether markers are drawn
t change minimum time on x-axis
T change maximum time on x-axis
xor X change scale of x-axis

There are many aspects of this view that can be altered. The time scale on the x-axis may
be changed as well as the ordering of the nodes on the y-axis. The drawing of messages and
markers and small lines between procedures (to make it possible to see recursive procedure
invocations) can be made to appear or disappear. The width of the procedure bars can also
be changed. The relevant key presses are listed below. Refer to Chapter 6 for more detail on
these parameters.

Mouse clicks:

Button Location Action

left or right message line | show information about the message
middle construct bar | show information about the construct

<Shift> middle] constructbar | show construct code
<Shift>left | messageline | show code that sent the message
<Shift>right | message line show code that received the message

5.2.4. Boxes Views

The Boxes views show the status of each of the processors at the current time. Each pro-
cessor is indicated by a box; lines or arrows between boxes indicate messages that have been
sent but not yet received. As shown in Figure 5-7, each processor box contains five smaller
boxes.

At the top, in the middle, is the number of the processor.
Just below that is a rectangle indicating the state of the pro- 11
cessor (busy, blocked, or flushing, as indicated by the Node
States Legend). At the bottom is the name of the procedure
the node is executing. The column to the left indicates the
number of pending messages. If the column is full, then there
are at least maxInboxCount messages pending. Figure 5-7. A Box
(maxInboxCount is a parameter for the Boxes views, with a
default value of 10. Chapter 6 describes how to set values for view parameters.) The column
on the right depicts node utilization — the time spent running divided by the total amount of
time spent running or blocked. The color and height of the column both reflect the
utilization. If node utilization is 90%, a red bar will fill 90% of the column, but if utilization
is 10%, a blue bar will fill 10% of the column. (The bar will be black on monochrome

displays.)

edge_news

The Grid version (shown on the left in Figure 5-8) will display information only if a grid
topology has been defined in the source code with the define_grid andde-
fine_grid_node user directives (see Section 3.3.6).

Key Presses:

Key Action
Fl,h,orH display help window

33

Sl
transp

il
transp

Figure 5-8. Boxes Views: The Grid and Circle Versions

5.2.5. Communication Load

Figure 5-9 shows the AGGREGATE COMMUNICATION VOLUME
L . . 15168
Communication Load view, which
displays either the cumulative vol-
ume (in bytes) or the cumulative v
pending messages in the system. The 0
view is a scrolling bar chart, with L
message volume or count on the ;’;
y-axis and time on the x-axis. If the E
chart is clicked on, Communication
Load prints the volume or count of
pending messages at the time clicked. 0 T
. . 22.9703 TIME (msec) 32.9703
The parameters for rescaling this
view are described in Chapter 6. Figure 5-9. Communication Load View
Key Presses:
_Key ___Action
aorA change scale-after value
corC toggle whether volume or count is drawn
h,H, or? display help window
jor] change jump factor
oorO change scale-to factor
/S change minimum/maximum scaling operator
vT change minimum/maximum time on x-axis
xorX/yorY change scale of x-axis/y-axis
v change minimum value on y-axis
\Y change maximum value on y-axis
w or W change “scale-when” factor

34

5.2.6. Inbox Sizes

The Inbox Sizes view, Figure 3-10,
shows the volume of messages, in
bytes, pending between each pair of
nodes. Colors or bitmaps are used to
indicate the volume, as shown by the
key on the right side of the view.

The numbers in the boxes can be
changed by putting the mouse in the
appropriate box, backspacing to erase
the number, typing in the new
number, and hitting <Return>
when done. In order to change the
largest size category and have the
others changed automatically, modify the maxSize parameter. The numSizes parameter can
be changed in order to modify the number of size categories.

Figure 5-10. Inbox Sizes View

Key Presses:

Key Action
F1l,h,orH display help window
m or M change the maximum size
nor N change the number of size categories

5.2.7. Adjusting VK

If the VK is found to be running too slowly, a non-zero jump factor can be specified for the
scrolling views (such as OverVIEW and Communication Load). The value of this factor, a
number between 0 and 1, inclusive, specifies 2 minimum fraction of the window that VK
must scroll each time the view needs to scroll (i.e., change the values on its time axis). A
value of O causes VK to scroll the minimum amount necessary, but a value of 0.5 will ensure
that VK always scrolls by half a screen. This means VK will scroll fewer times, and will
therefore display things faster, since scrolling is a time-consuming operation. Large jump
factors may cause the animation to look somewhat jerky, however. In general, small jump
factors of about 0.1 speed up VK greatly without disturbing the display too much.

Another trick to speeding up VK is based on the fact that VK takes longer to draw large
views than small ones. So, shrinking some views, especially the scrolling views, may help.
Finally, closing views that are not in use will speed up the execution.

If VK is displaying the trace records too quickly, setting pause times via the By Time menu,
or breaking on certain constructs will slow it down. Decreasing the jump factor will also
slow down the animation when viewing scrolling displays. If pictures are moving out of the

35

window too quickly, the scale of the scrolling views can be changed to view a larger segment
of the program .

If VK is not responding quickly enough when clicking on a view or menu, the
vk.eventsLoop parameter may need to be changed. In order to speed up processing, VK
normally checks for X events every eventsLoop iterations (i.e., after processing eventsLoop
trace records). The default value for this parameter is 100, but can be set to any non-negative
integer. It may turn out that even with a value of 0, VK responds slowly. This is probably
because the system running VK maintains a sizable internal queue of X events, all of which
must be processed before a mouse event can be processed. If this is the case, specifying a
non-zero jump factor can alleviate the problem, as the queue of X events can be processed
faster.

5.3. tally

tally generates a list of resource-utilization statistics on node-by-node and routine-by-rou-
tine bases.

The routine statistics give information typically provided by profilers with respect to
amount of time spent in various functions. In addition, it provides easy access to %
communication times in each routine and the significance of the communication time in
comparison with the total program execution time. The statistics can help to quickly
determine the sections of code which needs to be tuned

The output of tally can be used as input to statistical drawing packages such as Excel and
WingZ.

The only input to tally is a sorted trace file. tally relates identifiers in the trace file with
constructs in the source program by using the application database which is part of the trace
file information. tally places its output consisting of a set of tables, on the standard output
as well as in two different summary files.

5.3.1. Calling tally

tally is invoked with a sorted trace file or a ~help flag as follows:

tally [-help]
[sorted trace file]

As with VK (see Section 5.2.1), the database tally uses should be the one used to create the
trace file. If the ~help flag is present, tally prints a usage message and exits. If no trace file
is specified, tally uses inst /TRACE. SORT. tally places its output, a set of tables, on the
standard output and into two files: tally.summary and ncpu.summary.

36

5.3.2. tally’s Output

tally produces several tables of statistics. The first table presents data for each function exe-
cuting the program. The second table provides communication information per node. Node
statistics for each function with communications is also output. The last two tables contain
NCPU and routine concurrency statistics [Ref. 4]. The first table is sorted in descending
order with respect to function execution times:

1. Routine: The routine index and the name of the subroutine.

2. Busy time: The amount of time for which the function was performing useful work.
This is the amount of time not spent in communication.

3. Global Blocking: The amount of time a routine spent in a global blocking operation.

4. Send Blocking: The amount of time a routine spent in a send operation.

5. Receive Blocking: The amount of time a routine spent in a receive operation.

6. Life time: The amount of time taken to execute instructions in this function
(excluding the functions called from this function).

7. Percentage Communication: This number indicates the percentage of total execution
time the routine spent in communication.

8. Communication Index: This index takes into account the time spent in the function
with respect to the total time spent in the program, as well as the percentage of time
spent in communication in this function. The lower this value, the lower the impact
on the total program execution time of reducing this function’s communication
characteristics.

The second table consists of columns that show the aggregate communication characteristics
of nodes executing the program. The columns are:

1. Node number.

2. Busy time: The amount of time the node spent not performing communication re-

lated work.
Global Blocking: Amount of time spent in a global blocking operation.
Send Blocking: Amount of time spent in a send operation.
Recv Blocking: Amount of time spent in a receive operation.
Life time: This is the amount of time the node spent executing the program.

No VAW

Percentage communication: This number shows the amount of total execution time
of the processor spent in communication.
8. Link Contention: This percentage represents the total communication time a node
spent in contention.

The next set of tables provides statistics for routines which perform communications. The
statistics for each of the routines are presented in the form of independent tables. Each table
has entries similar to the ones in the second table. All the tables described above are directed
to standard output and stored in the “tally.summary” file. In addition, the NCPU and routine
concurrency statistics are computed and directed to the standard output while being stored in
a file called ncpu . summary.

37

1400

Time Usage By Node
o g) 2500

L §

Time Usage by Routines
(11 most significant routines)

1200

2000
1000
Z i 1500
800 Recv Blocking
600 M send Blocking 1000
I} Global Blocki
400 0 ocking 500
200 u Busy Time
0
0 v L) > @ @ W »
F I A AR T =N R B B A %ﬁﬁi"gﬁ; j_—%"gg
B g & & g ¥ & F B
] > & ©
© o
2500 T © T 0.009
D . Blocking T 0.008
2000 R <+ 0.007
== Send Blocking
+ 0.006
1500 I Gobal Blocking 0.005
A G, T '
Busy Time 1 0.004
1000
 0.003
500 F 0.002
F 0.001
0 F 0
2
$ 3 5 » % 5 & 5 g 4 o2 5 g g
= g ¥ B B &% & $ 5 » & 7 p
N %"I, < i~ 3 2 3 T 2 o < 5 <
o
350 ®© 250 - Routine Concurrency
NCPU Distribution (6 most signinficant routines)
(7 most significant routines)
300 T

200 + B yopldge

250 + filtery

B comp_ps
n setiv :
150 + xpldge
200 <+ - yzpldge . jacy
i xpldge B eigv
10 T B comp_ps 100 + .
ypldge
ypldge
100 +
= eigv

s
Ty

+ n O
- -t

38

The NCPU for a given subroutine and a given k is the amount of CPU time used by that
subroutine when k processors are busy, divided by k. For example, the NCPU data for a
particular application is plotted in the lower left-hand-corner of Figure 5-11. Itis a highly
parallel program: with all (16) of the processors concurrently busy for 325 msecs. During
most of that time, subroutine eigv is executing. If a subroutine spent much time executing
when only a few nodes were busy, this may indicate that the routine inhibits parallelization.
In other words, the subroutine may function as a bottleneck.

The Routine Concurrency data for the same trace is plotted in the lower right-hand-corner
of Figure 5-11. It indicates the amount of time spent by each subroutine when k copies were
executing simultaneously. This view indicates the degree to which each routine was
parallelized. If a routine never has more than a few copies running simultaneously, it may
indicate that the routine is inherently sequential. Note that this property differs from that of
inhibiting parallelism for all subroutines, as described above with the NCPU chart. As ex-
pected, eigv was the most parallelized routine: it executes concurrently on all the processors
for 150 msec.

A great deal of information is output by tally. So, we recommend using a statistical
drawing package to look at the data. To facilitate that process, each row of tally’s tables is a
list of numbers or strings separated by tabs. Tables are preceded by a title and separated by a
blank line

39

6. Customizing AIMS

AIMS tools have many parameters that allow one to change things like fonts, initial window
sizes, default locations of the trace file and application database, and specific features of VKs
views. The parameters have names like xinstrument .height, and
vk.overview. font. The first two sections below explain how to change the default values
of the parameters and how to change the values of certain parameters at run-time. The last
section contains a list of AIMS’ parameters, each of which is fully documented in Appendix D.

6.1. Setting Defaults for Parameters

Defaults for each of AIMS’ parameters, which are listed in Section 6.3, are built into the
system. However, there are a number of ways one can override these defaults. Indeed, the
user may have to if, for example, the default fonts are not available on their system. The
defaults can be set on the command-line, or in one of several default files.

6.1.1. Specifying Defaults on the Command Line

Several switches are provided to set values for parameters on the command-line. These are
_bg and - fg for background and foreground, -bd and -bw for border color and border
width, and -f£n for font. For example, one might type “VK -bg black -fg
chartreuse” for a glow-in-the-dark look. AIMS’ tools allow you to specify a trace file and
application database on the command line, as well as specifying other values. (These are
described in the sections documenting the use of each tool.) In addition, you can use the
—xrm switch to specify the value of any parameter, by following the switch with the full name
of the parameter, a colon, and the parameter’s value. For example, “VK -xrm
vk .overview.messageColor :magenta” would make it very easy to spot the messages
that OverVIEW draws.

6.1.2. Specifying Defaults in Files

AIMS looks in several files, including . Xdefaults, for defaults. To specify default values
in one of these files, add lines to the file of the form “<default name>:<default
value>“. The * notation may be used to specify several defaults with one line. For example,
the line “vk . * .borderWidth: 5" will set the border width of all of VK's views to 5. (The *
notation is discussed more fully in many X manuals. See, for example, Section 11.4 in
Volume One, the Xlib Programming Manual, by Adrian Nye.) Lines in a default file that
begin with an exclamation point are treated as comments. A small default file is shown in

Figure 6-1.

6.1.3. How AIMS Finds Defaults

Like many X-based applications, AIMS looks for defaults in four sources in the following
order, until it finds a match:
» Command line

e File named in the XENVIRONMENT variable (or .Xdefaults file, if
XENVIRONMENT is not set o
e Database created by the xrdb program (or .Xdefaults file, if xrdb has not been
run)
e /usr/lib/Xl1ll/app-defaults/Aims
Thus a command-line value takes precedence over a value in your .Xdefaults file, which
in turn takes precedence over one in the system defaults file. 1f no default value is present in
any of the four sources, AIMS uses its built-in defaults (listed in Appendix D with each
parameter).

! Set default trace file for all X-based tools
* traceFile: inst/tsort

! Set fonts for VK

vk.*.font: *lucida-medium-r-normal-sans-12-*
vk.help.font: *fixed*medium*-r-*-10-*

! Set jump factor to scroll faster
vk.*.jumpFactor: 0.15

! Position the OverVIEW, and make it long
vk.overview.x: 10

vk.overview.y: 200

vk.overview.width: 800

Figure 6-1. An Example of X-defaults

6.2. Changing VK’s Parameters Dynamically

VK allows you to change the value of many parameters while the program is running.
These dynamic parameters are changed by pressing a key in the appropriate window, or by
editing in the Preferences window.

The Preferences window allows you to change VK’s stop and resume times. To do this,
bring up the Preferences window, put the cursor over the value you want to change, and use
Emacs-like commandsT to edit the value. Remember to hit <Return> in the window when
you are done, or the change will not take affect.

To change a parameter with a key press, you simply move the cursor to the appropriate
window and press the key corresponding to the parameter you want to change. If necessary,
a small window appears where you can enter a new value. The current value is displayed;
you can erase it by backspacing or typing <Control>-U. To enter a new value, just hit

T In addition to the usual key strokes and backspace, <Control>-A moves the pointer to the beginning of
the line, <Control>-E moves it to the end, <Control>-K deletes everything to the right of the pointer,

and so forth.

41

<Return> or click on the Okay button. If you enter a value that is not legal, the terminal
beeps. Clicking on M sets the value back to the previous value, and clicking Cancel resets
the value and removes the editing window.

The following are the keys corresponding to the different parameters.

Parameter Key
vk.<view>.minTime t
vk.<view>.maxTime T
vk.<view> jumpFactor jor]
vk.<views>.minValue v
vk.<view>.maxValue \Y%
vk.<view>.minScalingOp s
vk.<view>.maxScalingOp S
vk.overview.showMarks rorR
vk.overview.showMessages m or M
vk.overview.barWidthFactor b or B
vk.overview.drawDividers dorD
vk.commLoad.volumeOrCount corC
vk.commLoad.scaleToFactor oorQO
vk.commLoad.scaleWhenFactor wor W
vk.commLoad.scaleAfterValue aorA
vk.inboxSizes.numSizes norN
vk.inboxSizes.maxSize morM
(node ordering in overview) oor O

6.3. A Listing of AIMS’ Parameters

vk.applicationDatabase vk.boxes. maxInboxCount vk.boxes.spectrumsSize
vk.boxes.breakpointsEnabled vk.circle.background vk.circle.borderColor
vk.circle.borderWidth vk.circle font vk.circle.foreground
vk.circle height vk.circle.width vk.circle.x

vk.circle.y vk.clickback.big font vk.clickback.medium.font
vk.clickback.small.font vk.commlLoad.background vk.commLoad.borderColor
vk.commLoad.borderWidth vk.commLoad.countColor vk.commLoad.font
vk.commLoad.foreground vk.commLoad.height vk.commLoad.jumpFactor
vk.commLoad.maxCount vk.commI oad . maxScalingOp vk.commLoad.maxTime
vk.commLoad.maxVolume vk.commLoad.minCount vk.commlLoad.minScalingOp
vk.commLoad.minTime vk.commLoad.minVolume vk.commLoad.scaleAfterValue
vk.commLoad.scaleToFactor vk.commLoad.scaleWhenFactor vk.commLoad.volumeColor
vk.commLoad.volumeOrCount vk.commLoad.width vk.comml oad.x
vk.commLoad.y vk.eventsLoop vk fixColors

42

vk.grid.background
vk.grid.font

vk.grid. width

vk.help.font
vk.inboxSizes.borderWidth
vk.inboxSizes.height
vk.inboxSizes. width
vk.menu.background
vk.menu.font
vk.menu.title.foreground
vk.nodeState.running.color
vk.nodeState.blockedReceiving.color
vk.overview.barWidthFactor
vk.overview.font
vk.overview.highlightColor
vk.overview.messageColor
vk.overview.showMarks
vk.overview.x

vk.stopTime
vk.traceRecord.background
vk.traceRecord.font
vk.traceRecord.width

vk.utilizationLegend.font

vk.grid.borderColor

vk.grid foreground

vk.grid x
vk.inboxSizes.background
vk.inboxSizes.font
vk.inboxSizes.maxSize
vk.inboxSizes.x
vk.menu.borderColor
vk.menu.foreground
vk.nodeState.font
vk.nodeState.blockedSendingColor
vk.nodeState.blockedGlobal.color
vk.overview.borderColor
vk.overview.foreground
vk.overview jumpFactor
vk.overview.minTime
vk.overview.showMessages
vk.overview.y

vk.timeStep
vk.traceRecord.borderColor
vk.traceRecord.foreground

vk.traceRecord.x

vk.grid.borderWidth
vk.grid.height

vk.grid.y
vk.inboxSizes.borderColor
vk.inboxSizes.foreground
vk.inboxSizes.numSizes
vk.inboxSizes.y
vk.menu.borderWidth

vk.menu.title.font

vk.nodeState.notTracing.color

vk.blocked.color
vk.overview.background
vk.overview.borderWidth
vk.overview.height
vk.overview.maxTime
vk.overview.showDividers
vk.overview.width
vk.startTime

vk.traceFile
vk.traceRecord.borderWidth
vk.traceRecord.height

vk.traceRecord.y

43

7.
(1]

(2]

(3]

[4]

44

References and Bibliography

T. Lehr, Z. Segall, D. Vrsalovic, E. Caplan, A. Chung & C. Fineman. “Visualizing
Performance Debugging”. Computer, October 1989, pp. 38-51.

G. A. Geist, M. T. Heath, B. W. Peyton, P. H. Worley “PICL — A Portable Instrumented
Communication Library” Tech Report ORNL/TM-11130, Oak Ridge National Laboratory. May
1990.

M. Heath and J. Ethridge. “Visualizing the Performance of Parallel Programs”. IEEE Software,
Vol. 8, No. 5, Sept. 1991, pp. 29-39.

T. E. Anderson and E. D. Lazowska. “Quartz: A Tool for Tuning Parallel Program Performance”.
In Proceedings of SIGMETRICS ‘90 Conference on Measurement and Modeling of Computer Systems,
May 1990, pp. 115-125.

Mehra, P., “Grammar-Driven Interpretation of Tracefiles: Applications in Modeling and
Visualization of Message-Passing Parallel Programs” submitted to The 1994 Scalable High-
Performance Computing Conference(SHPCC 94), Knoxville, TN May 1994.

Mehra, P., C. Schulbach, and J. Yan, “A Comparison of Two Model-Based Performance Prediction
Techniques for Message Passing Parallel Programs”. Submitted to ACM Sigmetrics Conference at
Nashville, TN, May 16-20, 1994.

Mehra, P., M. Gower, and M. Bass, “Automated Modeling of Message-Passing Programs,” Proc.
Int'l. Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS 94), IEEE Computer Society Press, Durham, NC, Jan. 1994.

Sarukkai, S., “Scalability-Analysis Tools for SPMD Message-Passing Parallel Programs,” Proc. Int'l.
Workshop on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 1IEEE
Computer Society Press, Durham, NC, Jan.1994.

Sarukkai, S., and Gotwals J., “Analyzing Data Structure Movements in Message Passing
Programs,” Submitted to ACM Sigmetrics Conference at Nashville, TN, May 16-20, 1994.

Sarukkai, S., and Jerry Yan, “Integration of Perturbation Analysis and Application Monitoring
Tools for Message Passing Parallel Programs, “ submitted to IEEE Transactions on Parallel and
Distributed Computing Systems.

Yan, J. C. and C. E. Fineman, Modeling Parallel Programs and Multiprocessor Architectures with
AXE, Contractor Rep.177582, NASA Ames Research Center, Moffett Field, CA, May1991.

Yan, J. C., Schmidt M. and Sarukkai, S., “Monitoring the Performance of Multidisciplinary
Applications on the iPSC/860”, submitted to The 1994 Scalable High-Performance Computing
Conference(SHPCC 94), Knoxville, TN May 1994.

Yan, J., C. “Performance Tuning with AIMS - An Automated Instrumentation and Monitoring
System for Multicomputers,” Proc. 27th Hawaii Int’l. Conf. on Systems Sciences, ACM, Jan. 1994.
Yan, J., C. Fineman, P. J. Hontalas, M. Schmidt, S. Listgarten, P. Mehra, S. Sarukkai, and C.
Schulbach, The Automated Instrumentation and Monitoring System (AIMS) Reference Manual, NASA
Ames Research Center, Moffett Field, June 1993.

Appendix A. Installation Guide

Installing AIMS requires three steps: creating the source tree, compiling the system, and
installing the executables. Various portions of AIMS may be installed on different machines.
The source code is distributed in tar format. Once the tar file has been obtained, a
directory for AIMS should be created and the tar file should be “untarred” into that
directory. For example,

mkdir aims_source

mv aims.tar aims_source
cd aims_source

tar xof aims.tar

rm aims.tar

After untarring the file, the source directory should have a Makefile and nine subdirec-
tories: common/, example/,misc/,monitor/, poem/, poem_spec/,parsers/,
tools/, andnotes/. Once the source tree has been created, the source can be compiled.
To do this, the Makefile in the top-level directory should be edited first. The following
may need to be changed: compilation directives, installation directories, location of X li-
braries, location for default files, and other system-specific definitions. These are discussed in
turn below.

The compilation directives indicate which parts of AIMS are to be created. A component
will be “made” only if its value is 1. For example:

MONITOR=0
INSTRUMENTORS=0
VK=1

TALLY=1
TRACESORT=1

When AIMS is “made” and installed in the appropriate directories, the items with a value of 1
are “made” and installed.

The installation directories indicate where the executables should be located. The directory
for the monitor is specified separately, as it is a library rather than an executable. For ex-
ample:

INSTALL_DIR = $(HOME) /bin
MONITOR_INSTALL_DIR = $(HOME)/lib
MAN_INSTALL_DIR = $(HOME)/man

The monitor installation directory should be remembered when linking the instrumented
code with the monitor libraries. e

45

In the next section of the Makefile, the location of the X include files and the libraries
should be specified. The values of the DEFAULTS_FILE and DEFAULT_DEST macros are
used for installing the system’s default. Some default files are located in AIMS’ misc/
subdirectory. Theyare defaults.sgi, defaults.sunos.color,
defaults.ultrix.color,and defaults.ultrix.mon. One of these should be speci-
fied as the default file, or a new one should be created as described in Chapter 6. The system
default file is installed in DEFAULTS_DEST, which is normally
/usr/1lib/X11/app-defaults/Aims. If DEFAULTS_DEST is /dev/null, no system
default file will be installed, and AIMS will use built-in values.

Next comes a variable that defines the target platform the system is being built for. That is,
it defines the target machine and source language. The latest version of AIMS supports C and
Fortran under the NX operating system on IPSC/860’s. CURRENTLY, A DIFFERENT AIMS
SYSTEM MUST BE BUILT FOR EACH PLATFORM. THIS MEANS THAT IF THERE ARE
USERS OF DIFFERENT PLATFORMS, THERE MUST BE TWO COLLECTIONS OF
BINARIES (e.g. one for Fortran on the host, one for C on the node, etc.). The libraries can be
shared for a given architecture, B]

Finally, there are a few other system-specific definitions required for compiling the system.
They are grouped into three sections, &éiqgnding on whether the machine is running IRIX,
Sun OS, or Ultrix. Uncomment the lines corresponding to the system of choice through the
removal of the pound signs, ensuring the other hnes are commented out. When all changes
have been made to the Makefile, “make” should be typed from the source directory. The
system will take about 30 minutes to compile. When the compilation has completed, “make
install” should be typed to install the system in the directories specified in the Makefile.

If the full system was created, the following will be in the installation directory:
atopg translates AIMS tracefiles to ParaGraph format

inst-f77-nx-node | programs that instrument source code
inst-f77-nx-host
inst-c-nx-node
inst-c-nx-host
load-f77-nx-node | programs used by the instrumentor to load files
load-£77-nx-host | and create/update an application database
load-c-nx-node
load-c-nx-host

tally program that tabulates statistics from the trace
file

tracesort program which sorts a trace file

xinstrument X-based instrumentor

VK program that graphically displays the trace file

The monitor installation directory will contain two files, nodelib.a and hostlib.a.

Appendix B. From Source Code to Trace Records

The tables on the following pages show the trace records generated by various source code
constructs, along with the names of the monitor routines that produce the trace records’.
Only those constructs listed in the tables produce trace records. Among the constructs that
do not produce trace records are the following: cprobe, csendrecv, gcol, gcolx,
gsendx, hsend, hsendrecv,isendrecv, killproc, msgcancel,waitall, and
waitone.

Many trace records are produced only conditionally; the conditions are listed in the fourth
through seventh columns of the tables. The fourth column specifies if the construct must
occur on the host or node in order to generate a record. If no value is specified, then the
record is produced in either case. Many constructs must be selected in the file’s profile before
they generate trace records. Such constructs are indicated with a check mark in the fifth
column. The value of the monitor parameter EVENT_LEVEL affects the production of many
records; this is indicated in the sixth column. For example, a 1 there indicates that the record
will be produced only if the event level is at least 1. (If this column has no entry, then the
record will be produced regardless of the event level, even if the level is negative.) The last
column indicates other miscellaneous conditions that may apply.

Source Code | Monitor Trace Conditions on
Production of Trace Record
Construct Event Record Node/ | Profile |Event Other
recorder Host Lvl.
eginning of mon_init MON_BEGIN Node Only node 0 sends
[gmgram start_trace TRACE_BEGIN Node 0 this.
proc_begin PROC_BEGIN Node v 1
Call to set_pid mon_setpid
Call to load mon_init
start_trace TRACE_BEGIN Host 0
proc_begin | PROC_BEGIN Host vV
End of program | stop_trace TRACE_END 0
mon_term FLUSH_BEGIN Node
FLUSH_END Node
MON_END

T Event recorders that apparently produce no trace records perform other functions for the monitor.

47

isend

Source Code | Monitor Trace Conditions on
Production of Trace Record
Construct Event Record Node/ | Profile |Event Other
recorder Host Lvl.
STOP statement | proc_ends PROC_END v 1
stop_trace TRACE_END 0
mon_term FLUSH_BEGIN Node
FLUSH_END Node
MON_END
Call to relcube | proc_end PROC_END Host) 1
stop_trace TRACE_END Host 0
mon_term MON_END Host
Call to killcube | proc_end PROC_END Host v 1
stop_trace TRACE_END Host 0
mon_term MON_END Host
Call to be- start_trace TRACE_BEGIN 0
in_trace
Call to end_trace | stop_trace TRACE_END 0
Beginning of
function or proc_begin PROC_BEGIN Node v 1
subroutine
End of function
or subroutine proc_end PROC_END Node y 1
Return statement | proc_end PROC_END v
Call to be- block_begin | BLOCK_BEGIN vV 0
in_block .
Call to block_end BLOCK_END v 0
lend_block
Call to in- point_marker | MARKER) 0
sert_marker
Call to a global | global_start | GLOBAL_BEGIN v 2
routine global end | GLOBAL_END y 2
Call to csend sync_send SYNC_SEND y 3 If BOAS* =0
SYNC_SEND_BLK v 3 IfBOAS =1
SYNC_SEND_UNBLK vV 3 IfBOAS =1
[nvocation of async_send | ASYNC_SEND v 3

T This includes calls to the following: gsync, gdhigh, gdlow, gdprod, gdsum, giand,
gihigh, gilow, gior, giprod, gisum, gixor, gland, glhigh, gllow, glor,

glprod, glsum, glxor, gshigh, gslow, gsprod, gssum, and gopf.

¥ BOAS is an abbreviation for the monitor’s BLOCK_ON_ALL_SYNC parameter.

48

"~ Conditions on

Source Code | Monitor Trace
Production of Trace Record
Construct Event Record Node/ | Profile {Event Other
recorder Host Lvl.
Call 1o crecv Sync_recv SYNC_RECV v 3 I BOAS = 0 and
msg. has arrived.
SYNC_RECV_BLK) 3 1f BOAS = 0 and
msg. hasn't arrived,
or BOAS=1
SYNC_RECV_UNBLK V 3 1f BOAS = 0 and
msg. hasn't arrived,
or BOAS = 1.
Invocation of async_recv
irecv
Call to msgwait | monmwait [ASYNC_SEND_BLK ¥ 3 If waiting on send.
ASYNC_SEND_UNBLK ¥ 3 If waiting on send.
ASYNC_RECV_BLK ¥ 3 if waiting on receive.
ASYNC_RECV_UNBLK vV 3 If waiting on receive.
Call to flushtrace FLUSH_BEGIN Node
flush_trace FLUSH_END Node
Call to de- set_config DEFINE_GRID
fine_grid
Call to de-
fine_grid_node | jefine_node | DEFINE_GRID_NODE
Any construct {Any event FLUSH_BEGIN Node If record bulffer is full.
that produces frecorder that | gy ysH_END Node If record buffer is full.
records produces
records

49

Appendix C. Trace Records

This appendix provides information on AIMS’ trace records. The first table lists the records,

along with their numerical identifiers, trace level thresholds, and formats. The second

section describes the format of each record, and the third the meaning

C.1. A Listing of AIMS Trace
Records

The table to the right lists AIMS’
trace records. The numerical identi-
fier for each is shown in the second
column. This identifier appears in
the trace file, rather than the full
name of the record. The third col-
umn indicates how large the moni-
tor's TRACE_LEVEL parameter must
be in order for the record to be gen-
erated. Those records that are pro-
duced regardless of the value of the
TRACE_LEVEL parameter have no
entry in the third column. (The full
list of conditions under which each of
these records is produced can be
found in Appendix B.) The fourth
column indicates the format of the
record. (S: Short Format; C: Code
Block Format; M: Message Format,
SM: Short Message Format; F: Flush
Format; T: Topology Format) The
formats are described in the next
section.

C.2. Trace Record Formats

There are six different trace record formats, as described below. Each format consists of
several fields, all of which are printed on one line in the trace file and displayed by VK’s Trace

Record view.

C.2.1. Short Format

of each record.

Name ID |Trace |Format
Level
TRACE_BEGIN 0 0 S
TRACE_END 1 0 S
PROC_BEGIN 2 1 C
PROC_END 3 1 C
BLOCK_BEGIN 4 0 C
BLOCK_END 5 0 C
MARKER 6 0 C
GLOBAL_BEGIN 7 2 C
GLOBAL_END 8 2 C
SYNC_SEND 9 3 M
SYNC_SEND_BLK 10 3 M
SYNC_SEND_UNBLK 11 3 SM
ASYNC_SEND 12 3 M
ASYNC_SEND_BLK 13 3 SM
ASYNC_SEND_UNBLK | 14 3 SM
SYNC_RECV 15 3 M
SYNC_RECV_BLK 16 3 SM
SYNC_RECV_UNBLK 17 3 M
ASYNC_RECV_BLK 18 3 SM
ASYNC_RECV_UNBLK 19 3 M
MON_BEGIN 20 C
MON_END 21 S
FLUSH_BEGIN 22 F
FLUSH_END 23 F
DEFINE_GRID 24 T
DEFINE_GRID_NODE | 25 T

The short format consists of four fields:.

s Trace record identifier

50

Time of event (seconds)

Time of event (microsegonds)
o

Node on which event oc¢curredt

This format is used for the following trace records: TRACE_BEGIN, TRACE__END, and
MON__END.

C.2.2. Code Block Format

The code block format consists of the fields in the short format, followed by two additional

fields:;

File identifier
Object identifier

The two identifiers are used with the application database to relate trace file events to

source code constructs.

This format is used for the following trace records: PROC_BEGIN, PROC_END,

BLOCK_BEGIN, BLOCK_END, MARKER, GLOBAI,_BEGIN, GLOBAL_END, and MON_BEGIN.

C.2.3. Message Format

The message format consists of the fields in the short format, followed by six additional

fields:

Other node participating in message
Type of message

Size of message

File identifier

Object identifier

Message identifier

The file and object identifiers are used with the application database to relate trace file
events to source code constructs. The message identifier is used only for asynchronous
transmissions.

This format is used for the following trace records: SYNC_SEND, SYNC_SEND_BLK,
ASYNC__SEND, SYNC_RECV, SYNC_RECV_UNBLK, and ASYNC_RECV_UNBLK.

C.2.4. Short Message Format

The short message format consists of the fields in the short format, followed by three ad-
ditional fields:

File identifier
Object identifier
Message identifier

T The host is represented by the number -32768.

51

The file and object identifiers are used with the application database to relate trace file
events to source code constructs. The message identifier is used only for asynchronous
transmissions. This format is used for the following trace records: SYNC_SEND_UNBLK,
ASYNC_SEND_RLK, ASYNC_SEND_UNBLK, SYNC_RECV_BLK, and ASYNC_RECV_BLK.

C.2.5. Flush Format

The flush format consists of the fields in the short format, followed by seven additional
fields:
e Accumulated flush time (seconds)

e Accumulated flush time (microseconds) Flush time (seconds)
e Flush time (microseconds) s Count
* Bytes » Total bytes

This format is used for the following trace records: FLUSH_BEGIN and FLUSH__END.

C.2.6. Topology Format

The topology format consists of the fields in the short format, followed by two additional
fields:
* Row e Column
This format is used for the following trace records: DEFINE_GRIDand
DEFINE_GRID_NODE.

C.3. Trace Record Interpretation

The analysis tools read the trace file to find out when a node began a new code block, when
it was blocked, when it sent a message, and when it received a message.

The following trace records indicate that a node is entering (or re-entering) a different code
block: PROC_BEGIN, PROC_END, BLOCK_BEGIN, and BLOCK_END.

The following trace records indicate that a node has started blocking; GLOBAL_BEGINT,
SYNC_SEND_BLK, ASYNC_SEND_BLK, SYNC_RECV_BLK, and ASYNC_RECV_BLK.

The following trace records indicate that a node has finished blocking: GLOBAL_END,
SYNC_ SEND_UNBLK, ASYNC_SEND_UNBLK, SYNC_RECV_UNBLK, &
ASYNC_RECV_UNBLK.

The following trace records indicate that a node has sent a message: SYNC_SEND,
SYNC_SEND_BLK, and ASYNC_SEND.

The following trace records indicate that a node has received a message: SYNC_RECV,
SYNC_RECV_UNBLK, and ASYNC_RECV_UNBLK.

T Note that time spent in global operations is considered by the analysis tools to represent time spent
blocked. This is because in general any significant time spent in such operations is due to synchronization
delays.

52

Appendix D. AIMS Parameters

This appendix describes all of the user-settable parameters of AIMS’ X-based tools. Itis
divided into several sections, which identify the parameters for xinstrument, and VK (general
parameters) respectively. Each feature is described by its name, the function it performs, the
type of its value (e.g., integer, real, string), the default value, and its update mode (dynamic
features can be changed during run-time, while static features have their values fixed
throughout the program’s execution). Dynamic features are listed with the key used to
change its the value during run-time. Some dynamic features are not changed via a key press,
but via the Preferences menu. This is also noted where relevant.

D.1. xinstrument Parameters

xinstrument allows you to specify the main window’s dimensions, as well as locations of
the application database and output directory.

Name: xinstrument.width and xinstrument.height

Function: These specify the width and height of xinstrument’s main window.
Type: integer Default: 350 and 450
Update mode: dynamic

Key: (None. You can resize the window with the mouse.)

Name: xinstrument.applicationDatabase

Function: This specifies a default location for the application database.

Type: string Default: appl_db
Update mode: static (But the value can be over-ridden with a command-line argument.)
Name: xinstrument.outputDirectory

Function: This specifies a default directory for the instrumented files.

Type: string Default: inst

Update mode: dynamic (You can change the value by editing xinstrument’s window.)

D.2. VK Parameters

VK has many parameters that you can adjust. Those that pertain particularly to the views
are covered in Section D.2.2, while the remainder, dealing with the trace file, fonts, menus,
and the like, are listed in Section D.2.1.

D.2.1. General VK Parameters

Note that values specified for these parameters on the command-line will override those
present in the defaults file. For example, if you specify in your . Xdefaults file that
vk.traceFile is tracel, but you invoke the VK by typing “VK trace2”, then you will view the
file trace2, not tracel. This is described more thoroughly in Section 6.3.

Name: vk.traceFile
Function: This specifies the trace file that will be viewed.
Type: string Default: inst/TRACE.SORT

Update mode: static

53

Name: vk.applicationDatabase

Function: This specifies a default location for the application database.

Type: string Default: appl_db

Update mode: static (But the value can be over-ridden with a command-line argument.)

Name: vk.startTime

Function: The views will not display anything until the startTime (which is measured in milliseconds)
has been reached in the trace file.

Type: non-negative real Default: 0

Update mode: dynamic (via Resume Time in the Preferences menu)

Name: vk.stopTime

Function: VK will pause after the stopTime (which is measured in milliseconds) has been reached in
the trace file.

Type: non-negative real Default: 1,000,000

Update mode: dynamic (via the Preferences menu)

Name: vk.timeStep

Function: This specifies a maximum time interval, in msec, between the times of two consecutively
displayed trace records. For example, if the current trace record has time 100 msec, and the
next has time 103.5 msec, a timeStep of 1msec will cause 3 “fake” records to be created at
times 101, 102, and 103. A timeStep of O means that no extra records will be created. A non-
zero value causes the views to be updated in a fashion that simulates real time, with fewer
discontinuities. However, it slows the processing down accordingly.

Type: non-negative real number Default: 0 (no extra trace records are generated)

Update mode: static

Name: vk.breakpointsEnabled

Function: This determines whether breakpoints will initially be enabled or disabled.

Type: boolean Default: 0

Update mode: dynamic (via the Preferences menu)

Name: vk.fixColors

Function: A value of 1 for this parameter indicates that VK should not allow you to dynamically change
the colors it associates with the procedures. This is useful for instances when VK runs out of
space for allocating new colors. If VK indicates that it cannot allocate enough colors, restart
VK with this option set to 1. If VK cannot find enough colors upon start-up, and you have
other VKs running, you should restart at least one of those with the colors fixed.

Type: boolean (0 or 1) Default: 0

Update mode: static

Name: vk.eventsLoop

Function: This parameter indicates how frequently VK should check for X events. It will process
vk . eventsLoop trace records before checking for and processing incoming X events. If
the value of this parameter is large, VK may run faster, since checking for events can be time-
consuming (at the same time, VK's response to user input may be slowed).

Type: positive integer Default: 100

Update mode: static

Name: vk.clickback.small. font, vk. clickback.medium. font,
vk.clickback.big.font, vk.utilizationLegend. font,
vk.nodeStateLegend. font, vk.help. font, and vk.menu. font

Function: These specify the fonts to be used for the clickback windows, the help windows, the node

54

state legend, the utilization legend, and the menus, respectively. The font for the help
menus should be a fixed-width font.

Type: string (The string value should be a pattern matched by one of the fonts available on your
display. You can see the list of available fonts by running the program xlsfonts, and view the
fonts individually with the program x£d.) o

Default: 6x10 Update mode: static

Name: vk .menu.background and vk.menu. foreground

Function: These specify the background and foreground colors for the VK's menus.

Type: string (This should appear in the file /usr/1ib/X11/rgb.txt, or the analogous file on
your system.)

Default: background is white, foreground is black Update mode: static

Name: vk.menu.borderColor and vk.menu.borderWidth

Function: These specify the color and width of the menus’ borders.

Type: borderColor is a string and borderWidth is a non-negative integer. (The string value should
appear in the file /usr/1ib/X11/rgb. txt or the analogous file on your system. Upper
and lower bounds for the borderWidth are determined by the program.)

Default: borderColor is dark turquoise, borderWidth is 2

Update mode: static R -

Name: vk.menu. font)

Function: This specifies the font to be used for the menus.

Type: string (The string value should be a pattern matched by one of the fonts available on your
display. You can see the list of available fonts by running the program xlsfonts, and view the
fonts individually with the program x£d.)

Default: 6x10 Update mode: static

Name: vk.menu.title. foreground and vk.menu.title.font

Function: These specify the foreground color and font to be used for the menus’ titles.

Type: string (The foreground value should appear in the file /usr/1ib/X11/rgb. txt or the
analogous file on your system. The font value should be a pattern matched by one of the
fonts available on your display. You can see the list of available fonts by running the
program x1sfonts, and view the fonts individually with the program x£d.)

Default: foreground is black, font is 6x10 Update mode: static

D.2.2. View Parameters

The views that make up AIMS’ View Kernel have many features that you can customize.
The first section below describes features common to all of the views. The second and third
sections describe features common to certain classes of views, the scrolling views and his-

togram views.

D.2.2.1.

Finally, the fourth section describes those features unique to specific views.

General View Parameters

The view kernel currently has the following views: OverVIEW, Boxes (Circle/Grid),
Communication Load, and Inbox Sizes. Each of these views provides the following options: x
coordinate, y coordinate, width, height, background, foreground, border color, border width,
and font. The <view> portion of the name should be replaced by one of: overview, circle,

grid, commLoad, or Inbox Sizes.

Name:
Function:

Type:

vk.<view>.x and vk.<view>.y

The x and y coordinates specify the position of the window’s upper-left corner (actually the
upper-left corner of the window’s border) when it is opened. 1f the coordinates are both 0,
some window managers will let you position the window with the mouse.

non-negative integer (upper bounds are determined by the program)

55

Default: 0and 0

Update mode: static (Thus, if a window is initially positioned with its upper-left corner at (100,100), it will
always reopen at (100,100), even if it is moved before being closed and reopened.)

Name: vk.<view>.width and vk.<view>.height

Function: These specify the width and height of the view.

Type: non-negative integer (upper and lower bounds are determined by the program)

Default:

View Width Height
OverVIEW 400 220
Boxes (Circle) 360 360
Boxes (Grid) 240 240
Communication Load 400 220
Inbox Sizes 270 240

Update mode: dynamic

Key: (None. You can resize the window with the mouse.)

Name: vk.<view>.background and vk.<view>. foreground

Function: These specify the background and foreground colors for the window.

Type: string (This should appear in the file /usr/1ib/X11/rgb. txt, or the analogous file on
your system.)

Default: background is white, foreground is black Update mode: static

Name: vk.<view>.borderColor and vk.<view>.borderWidth

Function: These specify the color and width of the window’s border.

Type: borderColor is a string and borderWidth is a2 non-negative integer. (The string value should
appear in the file /usr/1ib/X11/rgb. txt or the analogous file on your system. Upper
and lower bounds for the borderWidth are determined by the program.)

Default: borderColor is dark turquoise, borderWidth is 2

Update mode: static

Name: vk.<view>. font

Function: This specifies the font that a view will use.

Type: string (The string value should be a pattern matched by one of the fonts available on your
display. You can see the list of available fonts by running the program xlsfonts, and view the
fonts individually with the program xfd.)

Default: 6x10 Update mode: static

D.2.2.2. Scrolling View Parameters

There are several parameters that apply only to the scrolling views (currently these are
OverVIEW and Communication Load). The extra features supplied for scrolling views are
the jump factor and the delimiters of the time axis.

Name:
Function:

Type:

Update mode:

56

vk.<view> . jumpFactor

This specifies 2 minimum fraction of the window that should be scrolled (shifted to the left)
when scrolling is necessary. For example, if the minimum and maximum times are 150 and
200, and a record comes in at 203, the window would only shift left by 3 msec, with a jump
factor of zero. However, a jump factor of .2 would cause it to shift by 10 msec (.2 *
(200-150)). Higher jump factors cause the window to display trace records faster, since it
doesn’t have to scroll as many times. However, the scrolling may appear somewhat jerky
since the window scrolls in larger amounts.

real number between 0 and 1, inclusive Default: 0.0

dynamic Key: jor]

Name: vk.<views.minTime and vk.<view> .maxTime

Function: These specify the minimum and maximum times (in milliseconds) to use for the view’s
X-axis. : S

Type: non-negative real number Default minTime is 0.0, maxTime is 10.0

Update mode: dynamic Key: t forminTime, T for maxTime

D.2.2.3. Histogram View Parameters

There are a number of parameters specific to a certain class of scrolling views, namely the
histogram views (currently only Communication Load fits into this category). They are the
following: maximum value, minimum value, maximum scaling operator, minimum scaling
operator, scale to factor, scale when factor, and scale after value.

Name: vk .<view>.minvalue and vk.<view>.maxValue
Function: A histogram view is a scrolling view that depicts the changing value of a certain quantity as
time passes. The minimum/maximum values are the initial settings for the y-axis of these
views.
Type: The type varies. For the Communication Load view, these values are integers between 0 and
9,999,999, inclusive.
Default:
Name Default Value
commLoad minVolume 0
commLoad.minCount 0
commLoad maxVolume 10000
commLoad.minVolume 100
Update mode: dynamic Key: v forminvalue, V for maxvalue
Name: vk.<view>.minScalingOp and vk.<view> .maxScalingOp
Function: A scaling operator determines whether 2 min/max value will be adjusted automatically by the
program. If the scaling operator is “fixed”, the value will change only when the user changes
it. Ifitis “variable”, the value will be adjusted automatically by the program. (The way in
which the program makes its adjustments is determined by the values of the remaining three
parameters described below.)
Type: string (one of “fixed” or “variable”)
Default: minScalingOp is fixed, maxScalingOp is variable
Update mode: dynamic Key: s for minScalingOp, S for maxScalingOp

The three features that control the automatic scaling are described below, but first we'll give
a brief description of how the scaling is done. Automatic scaling on the maximum value
works as follows. (It works symmetrically on the minimum value.) If a value needs to be
drawn that is greater than the maximum value, the maximum value is increased. 1f all of the
values that are depicted are much smaller than the maximum value, and they have been so for
a while, the maximum value is decreased. The value that the maximum value should change
to is affected by the scale-to factor. The definition of “much smaller”, as used above, is
defined by the value of the scale-when factor. And finally, the scale-after value specifies the
amount of time during which all of the values should be small before the maximum value is

changed.
Name: vk.<view>.scaleToFactor
Function: If a value must change, this determines the number that it will change to. More specifically,

if the maximum value must be changed, it is changed to the new maximum times the

57

scaleToFactor. If the minimum value must be changed, it is changed to the new
minimum divided by the scaleToFactor.

Type: real number between 1 and 5, inclusive Default: 15

Update mode: dynamic Key: oorO

Name: vk.<view>.scaleWhenFactor

Function: This determines when the resolution along the y-axis can be increased. If all of the bars
displayed are very short (less than the scaleWhenFactor of chart’s height), then the max-
imum value can be decreased. Similarly, if all of the values are very tall (greater than (1 -
scaleWhenFactor) of the chart’s height), then the minimum value can be increased.

Type: real number between 0 and 1, inclusive Default: 0.5

Update mode: dynamic Key: wor W

Name: vk.<view>.scaleAfterValue

Function: This determines how long all values must remain small/large (as specified by the scale-
WhenFactor) before the max/min value is adjusted. (The number actually represents the
number of trace records that must be processed by the view.)

Type: integer between 0 and 10,000, inclusive Default: 100

Update mode: dynamic Key: aorA

D.2.2.4. Specific View Parameters

Some features are specific only to one view. These are described below on a view-by-view
basis. OverVIEW features —

Name: vk.overview.showMarks

Function: This determines whether or not the view will indicate marks set by the insert_marker
directive.

Type: boolean (0 or 1) Default: 1 (marks are indicated)

Update mode: dynamic Key: rorR

Name: vk.overview. showMessages

Function: This determines whether or not the view will draw message lines.

Type: boolean (0 or 1) Default: 1 (messages are drawn)

Update mode: dynamic Key: mor M

Name: vk.overview.messageColor

Function: The messages will be drawn in this color.

Type: string (This should appear in the file /usr/1ib/X11/rgb. txt, or the analogous file on
your system.)

Default: blue Update mode: static

Name: vk.overview.showDividers

Function: This determines whether small black lines are drawn to separate procedures. The lines help
to show invocations of recursive procedures, which normally would not be shown, but the
dividing lines can cover up procedures that run for very short amounts of time.

Type: boolean (0 or 1) Default: 0 (dividers are not drawn)

Update mode: dynamic Key: dorD

Narme: vk.overview.barWidthFactor

Function: This determines the width of the procedure bars displayed on the view. A value of 1 causes
them to be as wide as possible, whereas a value of 0 causes them not to be drawn.

Type: real number between 0 and 1, inclusive Default: 0.7

Update mode: dynamic Key: borB

Name: vk.overview.highlightColor

Function: A highlighted message (one that is clicked on) is drawn in this color.

58

Type: string (This should appear in the file /usr/1ib/X11/ rgb. txt, or the analogous file on
your system.)

Default: deep pink) Update mode: static

Name: (None. The node ordering cannot be specified by a named default.)

Function: This determines the order in which the nodes are listed on the y-axis.

Type: Each node is specified by a non-negative integer between 0 and the number of nodes - 1,
inclusive.

Default: increasing order from the bottom of the chart to the top

Update mode: dynamic Key: oorO

Boxes features —

Name: vk .boxes .maxInboxCount

Function: This is the maximum inbox count that can be displayed in the view’s boxes. (Any higher
count is displayed at the maximum height.)

Type: integer between 0 and 4096, inclusive

Default: 10 Update mode: static

Name: vk .boxes .spectrumSize

Function: This is the number of colors used to display the node utilization in the view’s boxes.

Type: integer between 0 and 100, inclusive

Default: 16 Update mode: static

Communication Load features —

Name: vk.commLoad . volumeOrCount

Function: This determines whether total message volume or the total number of messages is displayed.

Type: string (volume or count) Default volume

Update mode: dynamic Key: corC

Name: vk, commLoad.volumeColor and vk.commLoad.countColor

Function: This determines the color in which the volume/count are to be displayed.

Type: string (This should appear in the file fusr/lib/X11/rgb.txt, or the analogous file on your
system.)

Default: volumeColor is orchid, countColor is cornflower blue

Update mode: static

Inbox Sizes features include numSizes and maxSize.

Name: vk.inboxSizes.numSizes

Function: This determines the number of size categories that will be displayed. (This is one less than
the number of colors that the view will use to depict the volume of pending messages.)

Type: integer between 1 and 16, inclusive Default: 5

Update mode: dynamic , Key: nor N

Name: vk.inboxSizes.maxSize

Function: This determines the maximum size of the size categories. (This is the number in the lowest
dialogue box on the right side of the view.)

Type: integer between 1 and 99,999, inclusive Default: 512

Update mode: dynamic Key: morM

59

Appendix E. Converting AIMS Trace Files for ParaGraph

oonn
SPRCETIME DIAGRAN
AR
13 :
f i
1 BTl i 17
13 PRAREE : ; = - 4
¥ i H b R
12 - e e | xr{;] ;f’" °
11 »n TIITEL [ETA7 ; Et "ﬂz‘?'.'v'_:“"!i T g
1b B FRA . &
= s
= 0
B
NSG LM
- 15

T 1T T 17

FIERPARA SR FReRHEa

I 0 - N WA AN D W
e
N

nDOKLmMNan

L

B 1

? —

1 ; BI2D 45T HSIBILISITMTT

s

3| E u .'.-I

: . - " (]

Bn 4 g g | u] 3
ROEENRRIRDEENNN IEBE0EN n - ® -0 =0
e 2 4 & B 18 12 14 B a2 M n = = = =

- -'p
u!n.ni-rn »a

Figure E-1. A Potpourri of ParaGrapH Views from a Converted AIMS Trace File

Along with AIMS, we also provide a resource called atopg. This program allows the user to
convert an AIMS trace file into a format readable by ParaGraph. On running an AIMS trace
file through atopg, views such as the ones displayed above can be produced. The usage of

atopg is as follows:

atopg aims-trace > pgph-trace

The trace file produced by atopg can generate the following paragraph views: Utilization
Count, Gantt, Summary, Meter, and Profile; Communication Traffic (Volume), Spacetime,
Queues, Matrix, Meter (Volume), Animation, Hypercube, Network, Node Data, and Color Code;
Task Count, Gantt, Status, and Summary; Clock, Trace, Statistics, and Processor Status. The
Utilization Kiviat; Communication Traffic (Count) and Meter (Count); Critical Path, Phase, and
Coord Info. views do not work because of incompatibilities in the AIMS monitor and PICL

monitor.

60

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and raviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and 1o the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

" AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
November 1993 Technical Memorandum
4. TITLE AND SUBTITLE) 5. FUNDING NUMBERS

The Automated Instrumentation and Monitoring System (AIMS)
Reference Manual

6. AUTHOR(S) 509-10-33
Jerry Yan,* Philip Hontalas, Sherry Listgarten,* et al.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 3. PERFORMING ORGANIZATION

REPORT NUMBER

Ames Research Center
Moffett Field, CA 94035-1000 A-94012

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

National Aeronautics and Space Administration

Washington, DC 20546-0001 NASA TM-108795

11, SUPPLEMENTARY NOTES
Point of Contact: Jerry Yan, Ames Research Center, MS 269-3, Moffett Field, CA 94035-1000

(415) 6044381

*Recom Technologies, San Jose, California
123, DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited
Subject Category — 61

13. ABSTRACT (Maximum 200 words) .
Whether a researcher is designing the “next parallel programming paradigm,” another “scalable multiprocessor” or
investigating resource allocation algorithms for multiprocessors, a facility that enables parallel program execution to be
captured and displayed is invaluable. Careful analysis of execution traces can help computer designers and software
architects to uncover system behavior and to take advantage of specific application characteristics and hardware features.
A software tool kit that facilitates performance evaluation of parallel applications on multiprocessors is described in this
paper. The Automated Instrumentation and Monitoring System (AIMS) has four major software components: a source code
‘nstrumentor which automatically inserts active event recorders into the program’s source code before compilation; a run-
time performance-monitoring library, which collects performance data; a trace file animation and analysis tool kit which
reconstructs program execution from the trace file: and a trace post-processor which compensate for data collection
overhead. Besides being used as prototype for developing new techniques for instrumenting, monitoring, and visualizing
parallel program execution, AIMS is also being incorporated into the run-time environments of various hardware testbeds
to evaluate their impact on user productivity. Currently, AIMS instrumentors accept FORTRAN and C parallel programs
written for Intel’s NX operating system on the iPSC family of multicomputers. A run-time performance-monitoring library
for the iPSC/860 is included in this release. We plan to release monitors for other platforms (such as PVM and TMC’s
CM-5) in the near future. Performance data collected can be graphically displayed on workstations (e.g. Sun Sparc and SGI)
supporting X-Windows (in particular, X11R35, Motif 1.1.3).

14. SUBJECT TERMS 15. NUMBER OF PAGES
Performan evaluation, Parallel processing, Performance monitoring 70
16. PRICE CODE
A04
o — R
e RTTV CLASSIFICATION |16, SECURITY CLASSIFICATION |19. SECURITY GLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified
NSN 7540-01-280-5500 ' Standard Form 298 (Rev. 2-89)

Prescribed by ANSI 5td. Z39-18

